public static final class TextSentimentProto.TextSentimentAnnotation extends GeneratedMessageV3 implements TextSentimentProto.TextSentimentAnnotationOrBuilder
Contains annotation details specific to text sentiment.
Protobuf type google.cloud.automl.v1beta1.TextSentimentAnnotation
Static Fields
SENTIMENT_FIELD_NUMBER
public static final int SENTIMENT_FIELD_NUMBER
Field Value
Static Methods
getDefaultInstance()
public static TextSentimentProto.TextSentimentAnnotation getDefaultInstance()
Returns
getDescriptor()
public static final Descriptors.Descriptor getDescriptor()
Returns
newBuilder()
public static TextSentimentProto.TextSentimentAnnotation.Builder newBuilder()
Returns
newBuilder(TextSentimentProto.TextSentimentAnnotation prototype)
public static TextSentimentProto.TextSentimentAnnotation.Builder newBuilder(TextSentimentProto.TextSentimentAnnotation prototype)
Parameter
Returns
parseDelimitedFrom(InputStream input)
public static TextSentimentProto.TextSentimentAnnotation parseDelimitedFrom(InputStream input)
Parameter
Returns
Exceptions
parseDelimitedFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
public static TextSentimentProto.TextSentimentAnnotation parseDelimitedFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
parseFrom(byte[] data)
public static TextSentimentProto.TextSentimentAnnotation parseFrom(byte[] data)
Parameter
Name | Description |
data | byte[]
|
Returns
Exceptions
parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)
public static TextSentimentProto.TextSentimentAnnotation parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
parseFrom(ByteString data)
public static TextSentimentProto.TextSentimentAnnotation parseFrom(ByteString data)
Parameter
Returns
Exceptions
parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)
public static TextSentimentProto.TextSentimentAnnotation parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
parseFrom(CodedInputStream input)
public static TextSentimentProto.TextSentimentAnnotation parseFrom(CodedInputStream input)
Parameter
Returns
Exceptions
parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
public static TextSentimentProto.TextSentimentAnnotation parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
parseFrom(InputStream input)
public static TextSentimentProto.TextSentimentAnnotation parseFrom(InputStream input)
Parameter
Returns
Exceptions
parseFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
public static TextSentimentProto.TextSentimentAnnotation parseFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
parseFrom(ByteBuffer data)
public static TextSentimentProto.TextSentimentAnnotation parseFrom(ByteBuffer data)
Parameter
Returns
Exceptions
parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)
public static TextSentimentProto.TextSentimentAnnotation parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
parser()
public static Parser<TextSentimentProto.TextSentimentAnnotation> parser()
Returns
Methods
equals(Object obj)
public boolean equals(Object obj)
Parameter
Returns
Overrides
getDefaultInstanceForType()
public TextSentimentProto.TextSentimentAnnotation getDefaultInstanceForType()
Returns
getParserForType()
public Parser<TextSentimentProto.TextSentimentAnnotation> getParserForType()
Returns
Overrides
getSentiment()
public int getSentiment()
Output only. The sentiment with the semantic, as given to the
AutoMl.ImportData when populating the dataset from which the model used
for the prediction had been trained.
The sentiment values are between 0 and
Dataset.text_sentiment_dataset_metadata.sentiment_max (inclusive),
with higher value meaning more positive sentiment. They are completely
relative, i.e. 0 means least positive sentiment and sentiment_max means
the most positive from the sentiments present in the train data. Therefore
e.g. if train data had only negative sentiment, then sentiment_max, would
be still negative (although least negative).
The sentiment shouldn't be confused with "score" or "magnitude"
from the previous Natural Language Sentiment Analysis API.
int32 sentiment = 1;
Returns
Type | Description |
int | The sentiment.
|
getSerializedSize()
public int getSerializedSize()
Returns
Overrides
getUnknownFields()
public final UnknownFieldSet getUnknownFields()
Returns
Overrides
hashCode()
Returns
Overrides
internalGetFieldAccessorTable()
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
Overrides
isInitialized()
public final boolean isInitialized()
Returns
Overrides
newBuilderForType()
public TextSentimentProto.TextSentimentAnnotation.Builder newBuilderForType()
Returns
newBuilderForType(GeneratedMessageV3.BuilderParent parent)
protected TextSentimentProto.TextSentimentAnnotation.Builder newBuilderForType(GeneratedMessageV3.BuilderParent parent)
Parameter
Returns
Overrides
newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)
protected Object newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)
Parameter
Returns
Overrides
toBuilder()
public TextSentimentProto.TextSentimentAnnotation.Builder toBuilder()
Returns
writeTo(CodedOutputStream output)
public void writeTo(CodedOutputStream output)
Parameter
Overrides
Exceptions