Class ClassificationEvaluationMetrics.Builder (2.54.0)

public static final class ClassificationEvaluationMetrics.Builder extends GeneratedMessageV3.Builder<ClassificationEvaluationMetrics.Builder> implements ClassificationEvaluationMetricsOrBuilder

Model evaluation metrics for classification problems. Note: For Video Classification this metrics only describe quality of the Video Classification predictions of "segment_classification" type.

Protobuf type google.cloud.automl.v1.ClassificationEvaluationMetrics

Static Methods

getDescriptor()

public static final Descriptors.Descriptor getDescriptor()
Returns
Type Description
Descriptor

Methods

addAllAnnotationSpecId(Iterable<String> values)

public ClassificationEvaluationMetrics.Builder addAllAnnotationSpecId(Iterable<String> values)

Output only. The annotation spec ids used for this evaluation.

repeated string annotation_spec_id = 5;

Parameter
Name Description
values Iterable<String>

The annotationSpecId to add.

Returns
Type Description
ClassificationEvaluationMetrics.Builder

This builder for chaining.

addAllConfidenceMetricsEntry(Iterable<? extends ClassificationEvaluationMetrics.ConfidenceMetricsEntry> values)

public ClassificationEvaluationMetrics.Builder addAllConfidenceMetricsEntry(Iterable<? extends ClassificationEvaluationMetrics.ConfidenceMetricsEntry> values)

Output only. Metrics for each confidence_threshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and position_threshold = INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated metrics are derived from them. The confidence metrics entries may also be supplied for additional values of position_threshold, but from these no aggregated metrics are computed.

repeated .google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;

Parameter
Name Description
values Iterable<? extends com.google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry>
Returns
Type Description
ClassificationEvaluationMetrics.Builder

addAnnotationSpecId(String value)

public ClassificationEvaluationMetrics.Builder addAnnotationSpecId(String value)

Output only. The annotation spec ids used for this evaluation.

repeated string annotation_spec_id = 5;

Parameter
Name Description
value String

The annotationSpecId to add.

Returns
Type Description
ClassificationEvaluationMetrics.Builder

This builder for chaining.

addAnnotationSpecIdBytes(ByteString value)

public ClassificationEvaluationMetrics.Builder addAnnotationSpecIdBytes(ByteString value)

Output only. The annotation spec ids used for this evaluation.

repeated string annotation_spec_id = 5;

Parameter
Name Description
value ByteString

The bytes of the annotationSpecId to add.

Returns
Type Description
ClassificationEvaluationMetrics.Builder

This builder for chaining.

addConfidenceMetricsEntry(ClassificationEvaluationMetrics.ConfidenceMetricsEntry value)

public ClassificationEvaluationMetrics.Builder addConfidenceMetricsEntry(ClassificationEvaluationMetrics.ConfidenceMetricsEntry value)

Output only. Metrics for each confidence_threshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and position_threshold = INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated metrics are derived from them. The confidence metrics entries may also be supplied for additional values of position_threshold, but from these no aggregated metrics are computed.

repeated .google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;

Parameter
Name Description
value ClassificationEvaluationMetrics.ConfidenceMetricsEntry
Returns
Type Description
ClassificationEvaluationMetrics.Builder

addConfidenceMetricsEntry(ClassificationEvaluationMetrics.ConfidenceMetricsEntry.Builder builderForValue)

public ClassificationEvaluationMetrics.Builder addConfidenceMetricsEntry(ClassificationEvaluationMetrics.ConfidenceMetricsEntry.Builder builderForValue)

Output only. Metrics for each confidence_threshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and position_threshold = INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated metrics are derived from them. The confidence metrics entries may also be supplied for additional values of position_threshold, but from these no aggregated metrics are computed.

repeated .google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;

Parameter
Name Description
builderForValue ClassificationEvaluationMetrics.ConfidenceMetricsEntry.Builder
Returns
Type Description
ClassificationEvaluationMetrics.Builder

addConfidenceMetricsEntry(int index, ClassificationEvaluationMetrics.ConfidenceMetricsEntry value)

public ClassificationEvaluationMetrics.Builder addConfidenceMetricsEntry(int index, ClassificationEvaluationMetrics.ConfidenceMetricsEntry value)

Output only. Metrics for each confidence_threshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and position_threshold = INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated metrics are derived from them. The confidence metrics entries may also be supplied for additional values of position_threshold, but from these no aggregated metrics are computed.

repeated .google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;

Parameters
Name Description
index int
value ClassificationEvaluationMetrics.ConfidenceMetricsEntry
Returns
Type Description
ClassificationEvaluationMetrics.Builder

addConfidenceMetricsEntry(int index, ClassificationEvaluationMetrics.ConfidenceMetricsEntry.Builder builderForValue)

public ClassificationEvaluationMetrics.Builder addConfidenceMetricsEntry(int index, ClassificationEvaluationMetrics.ConfidenceMetricsEntry.Builder builderForValue)

Output only. Metrics for each confidence_threshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and position_threshold = INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated metrics are derived from them. The confidence metrics entries may also be supplied for additional values of position_threshold, but from these no aggregated metrics are computed.

repeated .google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;

Parameters
Name Description
index int
builderForValue ClassificationEvaluationMetrics.ConfidenceMetricsEntry.Builder
Returns
Type Description
ClassificationEvaluationMetrics.Builder

addConfidenceMetricsEntryBuilder()

public ClassificationEvaluationMetrics.ConfidenceMetricsEntry.Builder addConfidenceMetricsEntryBuilder()

Output only. Metrics for each confidence_threshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and position_threshold = INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated metrics are derived from them. The confidence metrics entries may also be supplied for additional values of position_threshold, but from these no aggregated metrics are computed.

repeated .google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;

Returns
Type Description
ClassificationEvaluationMetrics.ConfidenceMetricsEntry.Builder

addConfidenceMetricsEntryBuilder(int index)

public ClassificationEvaluationMetrics.ConfidenceMetricsEntry.Builder addConfidenceMetricsEntryBuilder(int index)

Output only. Metrics for each confidence_threshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and position_threshold = INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated metrics are derived from them. The confidence metrics entries may also be supplied for additional values of position_threshold, but from these no aggregated metrics are computed.

repeated .google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;

Parameter
Name Description
index int
Returns
Type Description
ClassificationEvaluationMetrics.ConfidenceMetricsEntry.Builder

addRepeatedField(Descriptors.FieldDescriptor field, Object value)

public ClassificationEvaluationMetrics.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
Parameters
Name Description
field FieldDescriptor
value Object
Returns
Type Description
ClassificationEvaluationMetrics.Builder
Overrides

build()

public ClassificationEvaluationMetrics build()
Returns
Type Description
ClassificationEvaluationMetrics

buildPartial()

public ClassificationEvaluationMetrics buildPartial()
Returns
Type Description
ClassificationEvaluationMetrics

clear()

public ClassificationEvaluationMetrics.Builder clear()
Returns
Type Description
ClassificationEvaluationMetrics.Builder
Overrides

clearAnnotationSpecId()

public ClassificationEvaluationMetrics.Builder clearAnnotationSpecId()

Output only. The annotation spec ids used for this evaluation.

repeated string annotation_spec_id = 5;

Returns
Type Description
ClassificationEvaluationMetrics.Builder

This builder for chaining.

clearAuPrc()

public ClassificationEvaluationMetrics.Builder clearAuPrc()

Output only. The Area Under Precision-Recall Curve metric. Micro-averaged for the overall evaluation.

float au_prc = 1;

Returns
Type Description
ClassificationEvaluationMetrics.Builder

This builder for chaining.

clearAuRoc()

public ClassificationEvaluationMetrics.Builder clearAuRoc()

Output only. The Area Under Receiver Operating Characteristic curve metric. Micro-averaged for the overall evaluation.

float au_roc = 6;

Returns
Type Description
ClassificationEvaluationMetrics.Builder

This builder for chaining.

clearConfidenceMetricsEntry()

public ClassificationEvaluationMetrics.Builder clearConfidenceMetricsEntry()

Output only. Metrics for each confidence_threshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and position_threshold = INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated metrics are derived from them. The confidence metrics entries may also be supplied for additional values of position_threshold, but from these no aggregated metrics are computed.

repeated .google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;

Returns
Type Description
ClassificationEvaluationMetrics.Builder

clearConfusionMatrix()

public ClassificationEvaluationMetrics.Builder clearConfusionMatrix()

Output only. Confusion matrix of the evaluation. Only set for MULTICLASS classification problems where number of labels is no more than 10. Only set for model level evaluation, not for evaluation per label.

.google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4;

Returns
Type Description
ClassificationEvaluationMetrics.Builder

clearField(Descriptors.FieldDescriptor field)

public ClassificationEvaluationMetrics.Builder clearField(Descriptors.FieldDescriptor field)
Parameter
Name Description
field FieldDescriptor
Returns
Type Description
ClassificationEvaluationMetrics.Builder
Overrides

clearLogLoss()

public ClassificationEvaluationMetrics.Builder clearLogLoss()

Output only. The Log Loss metric.

float log_loss = 7;

Returns
Type Description
ClassificationEvaluationMetrics.Builder

This builder for chaining.

clearOneof(Descriptors.OneofDescriptor oneof)

public ClassificationEvaluationMetrics.Builder clearOneof(Descriptors.OneofDescriptor oneof)
Parameter
Name Description
oneof OneofDescriptor
Returns
Type Description
ClassificationEvaluationMetrics.Builder
Overrides

clone()

public ClassificationEvaluationMetrics.Builder clone()
Returns
Type Description
ClassificationEvaluationMetrics.Builder
Overrides

getAnnotationSpecId(int index)

public String getAnnotationSpecId(int index)

Output only. The annotation spec ids used for this evaluation.

repeated string annotation_spec_id = 5;

Parameter
Name Description
index int

The index of the element to return.

Returns
Type Description
String

The annotationSpecId at the given index.

getAnnotationSpecIdBytes(int index)

public ByteString getAnnotationSpecIdBytes(int index)

Output only. The annotation spec ids used for this evaluation.

repeated string annotation_spec_id = 5;

Parameter
Name Description
index int

The index of the value to return.

Returns
Type Description
ByteString

The bytes of the annotationSpecId at the given index.

getAnnotationSpecIdCount()

public int getAnnotationSpecIdCount()

Output only. The annotation spec ids used for this evaluation.

repeated string annotation_spec_id = 5;

Returns
Type Description
int

The count of annotationSpecId.

getAnnotationSpecIdList()

public ProtocolStringList getAnnotationSpecIdList()

Output only. The annotation spec ids used for this evaluation.

repeated string annotation_spec_id = 5;

Returns
Type Description
ProtocolStringList

A list containing the annotationSpecId.

getAuPrc()

public float getAuPrc()

Output only. The Area Under Precision-Recall Curve metric. Micro-averaged for the overall evaluation.

float au_prc = 1;

Returns
Type Description
float

The auPrc.

getAuRoc()

public float getAuRoc()

Output only. The Area Under Receiver Operating Characteristic curve metric. Micro-averaged for the overall evaluation.

float au_roc = 6;

Returns
Type Description
float

The auRoc.

getConfidenceMetricsEntry(int index)

public ClassificationEvaluationMetrics.ConfidenceMetricsEntry getConfidenceMetricsEntry(int index)

Output only. Metrics for each confidence_threshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and position_threshold = INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated metrics are derived from them. The confidence metrics entries may also be supplied for additional values of position_threshold, but from these no aggregated metrics are computed.

repeated .google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;

Parameter
Name Description
index int
Returns
Type Description
ClassificationEvaluationMetrics.ConfidenceMetricsEntry

getConfidenceMetricsEntryBuilder(int index)

public ClassificationEvaluationMetrics.ConfidenceMetricsEntry.Builder getConfidenceMetricsEntryBuilder(int index)

Output only. Metrics for each confidence_threshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and position_threshold = INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated metrics are derived from them. The confidence metrics entries may also be supplied for additional values of position_threshold, but from these no aggregated metrics are computed.

repeated .google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;

Parameter
Name Description
index int
Returns
Type Description
ClassificationEvaluationMetrics.ConfidenceMetricsEntry.Builder

getConfidenceMetricsEntryBuilderList()

public List<ClassificationEvaluationMetrics.ConfidenceMetricsEntry.Builder> getConfidenceMetricsEntryBuilderList()

Output only. Metrics for each confidence_threshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and position_threshold = INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated metrics are derived from them. The confidence metrics entries may also be supplied for additional values of position_threshold, but from these no aggregated metrics are computed.

repeated .google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;

Returns
Type Description
List<Builder>

getConfidenceMetricsEntryCount()

public int getConfidenceMetricsEntryCount()

Output only. Metrics for each confidence_threshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and position_threshold = INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated metrics are derived from them. The confidence metrics entries may also be supplied for additional values of position_threshold, but from these no aggregated metrics are computed.

repeated .google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;

Returns
Type Description
int

getConfidenceMetricsEntryList()

public List<ClassificationEvaluationMetrics.ConfidenceMetricsEntry> getConfidenceMetricsEntryList()

Output only. Metrics for each confidence_threshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and position_threshold = INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated metrics are derived from them. The confidence metrics entries may also be supplied for additional values of position_threshold, but from these no aggregated metrics are computed.

repeated .google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;

Returns
Type Description
List<ConfidenceMetricsEntry>

getConfidenceMetricsEntryOrBuilder(int index)

public ClassificationEvaluationMetrics.ConfidenceMetricsEntryOrBuilder getConfidenceMetricsEntryOrBuilder(int index)

Output only. Metrics for each confidence_threshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and position_threshold = INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated metrics are derived from them. The confidence metrics entries may also be supplied for additional values of position_threshold, but from these no aggregated metrics are computed.

repeated .google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;

Parameter
Name Description
index int
Returns
Type Description
ClassificationEvaluationMetrics.ConfidenceMetricsEntryOrBuilder

getConfidenceMetricsEntryOrBuilderList()

public List<? extends ClassificationEvaluationMetrics.ConfidenceMetricsEntryOrBuilder> getConfidenceMetricsEntryOrBuilderList()

Output only. Metrics for each confidence_threshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and position_threshold = INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated metrics are derived from them. The confidence metrics entries may also be supplied for additional values of position_threshold, but from these no aggregated metrics are computed.

repeated .google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;

Returns
Type Description
List<? extends com.google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntryOrBuilder>

getConfusionMatrix()

public ClassificationEvaluationMetrics.ConfusionMatrix getConfusionMatrix()

Output only. Confusion matrix of the evaluation. Only set for MULTICLASS classification problems where number of labels is no more than 10. Only set for model level evaluation, not for evaluation per label.

.google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4;

Returns
Type Description
ClassificationEvaluationMetrics.ConfusionMatrix

The confusionMatrix.

getConfusionMatrixBuilder()

public ClassificationEvaluationMetrics.ConfusionMatrix.Builder getConfusionMatrixBuilder()

Output only. Confusion matrix of the evaluation. Only set for MULTICLASS classification problems where number of labels is no more than 10. Only set for model level evaluation, not for evaluation per label.

.google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4;

Returns
Type Description
ClassificationEvaluationMetrics.ConfusionMatrix.Builder

getConfusionMatrixOrBuilder()

public ClassificationEvaluationMetrics.ConfusionMatrixOrBuilder getConfusionMatrixOrBuilder()

Output only. Confusion matrix of the evaluation. Only set for MULTICLASS classification problems where number of labels is no more than 10. Only set for model level evaluation, not for evaluation per label.

.google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4;

Returns
Type Description
ClassificationEvaluationMetrics.ConfusionMatrixOrBuilder

getDefaultInstanceForType()

public ClassificationEvaluationMetrics getDefaultInstanceForType()
Returns
Type Description
ClassificationEvaluationMetrics

getDescriptorForType()

public Descriptors.Descriptor getDescriptorForType()
Returns
Type Description
Descriptor
Overrides

getLogLoss()

public float getLogLoss()

Output only. The Log Loss metric.

float log_loss = 7;

Returns
Type Description
float

The logLoss.

hasConfusionMatrix()

public boolean hasConfusionMatrix()

Output only. Confusion matrix of the evaluation. Only set for MULTICLASS classification problems where number of labels is no more than 10. Only set for model level evaluation, not for evaluation per label.

.google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4;

Returns
Type Description
boolean

Whether the confusionMatrix field is set.

internalGetFieldAccessorTable()

protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
Type Description
FieldAccessorTable
Overrides

isInitialized()

public final boolean isInitialized()
Returns
Type Description
boolean
Overrides

mergeConfusionMatrix(ClassificationEvaluationMetrics.ConfusionMatrix value)

public ClassificationEvaluationMetrics.Builder mergeConfusionMatrix(ClassificationEvaluationMetrics.ConfusionMatrix value)

Output only. Confusion matrix of the evaluation. Only set for MULTICLASS classification problems where number of labels is no more than 10. Only set for model level evaluation, not for evaluation per label.

.google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4;

Parameter
Name Description
value ClassificationEvaluationMetrics.ConfusionMatrix
Returns
Type Description
ClassificationEvaluationMetrics.Builder

mergeFrom(ClassificationEvaluationMetrics other)

public ClassificationEvaluationMetrics.Builder mergeFrom(ClassificationEvaluationMetrics other)
Parameter
Name Description
other ClassificationEvaluationMetrics
Returns
Type Description
ClassificationEvaluationMetrics.Builder

mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)

public ClassificationEvaluationMetrics.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Name Description
input CodedInputStream
extensionRegistry ExtensionRegistryLite
Returns
Type Description
ClassificationEvaluationMetrics.Builder
Overrides
Exceptions
Type Description
IOException

mergeFrom(Message other)

public ClassificationEvaluationMetrics.Builder mergeFrom(Message other)
Parameter
Name Description
other Message
Returns
Type Description
ClassificationEvaluationMetrics.Builder
Overrides

mergeUnknownFields(UnknownFieldSet unknownFields)

public final ClassificationEvaluationMetrics.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
Parameter
Name Description
unknownFields UnknownFieldSet
Returns
Type Description
ClassificationEvaluationMetrics.Builder
Overrides

removeConfidenceMetricsEntry(int index)

public ClassificationEvaluationMetrics.Builder removeConfidenceMetricsEntry(int index)

Output only. Metrics for each confidence_threshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and position_threshold = INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated metrics are derived from them. The confidence metrics entries may also be supplied for additional values of position_threshold, but from these no aggregated metrics are computed.

repeated .google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;

Parameter
Name Description
index int
Returns
Type Description
ClassificationEvaluationMetrics.Builder

setAnnotationSpecId(int index, String value)

public ClassificationEvaluationMetrics.Builder setAnnotationSpecId(int index, String value)

Output only. The annotation spec ids used for this evaluation.

repeated string annotation_spec_id = 5;

Parameters
Name Description
index int

The index to set the value at.

value String

The annotationSpecId to set.

Returns
Type Description
ClassificationEvaluationMetrics.Builder

This builder for chaining.

setAuPrc(float value)

public ClassificationEvaluationMetrics.Builder setAuPrc(float value)

Output only. The Area Under Precision-Recall Curve metric. Micro-averaged for the overall evaluation.

float au_prc = 1;

Parameter
Name Description
value float

The auPrc to set.

Returns
Type Description
ClassificationEvaluationMetrics.Builder

This builder for chaining.

setAuRoc(float value)

public ClassificationEvaluationMetrics.Builder setAuRoc(float value)

Output only. The Area Under Receiver Operating Characteristic curve metric. Micro-averaged for the overall evaluation.

float au_roc = 6;

Parameter
Name Description
value float

The auRoc to set.

Returns
Type Description
ClassificationEvaluationMetrics.Builder

This builder for chaining.

setConfidenceMetricsEntry(int index, ClassificationEvaluationMetrics.ConfidenceMetricsEntry value)

public ClassificationEvaluationMetrics.Builder setConfidenceMetricsEntry(int index, ClassificationEvaluationMetrics.ConfidenceMetricsEntry value)

Output only. Metrics for each confidence_threshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and position_threshold = INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated metrics are derived from them. The confidence metrics entries may also be supplied for additional values of position_threshold, but from these no aggregated metrics are computed.

repeated .google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;

Parameters
Name Description
index int
value ClassificationEvaluationMetrics.ConfidenceMetricsEntry
Returns
Type Description
ClassificationEvaluationMetrics.Builder

setConfidenceMetricsEntry(int index, ClassificationEvaluationMetrics.ConfidenceMetricsEntry.Builder builderForValue)

public ClassificationEvaluationMetrics.Builder setConfidenceMetricsEntry(int index, ClassificationEvaluationMetrics.ConfidenceMetricsEntry.Builder builderForValue)

Output only. Metrics for each confidence_threshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and position_threshold = INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated metrics are derived from them. The confidence metrics entries may also be supplied for additional values of position_threshold, but from these no aggregated metrics are computed.

repeated .google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;

Parameters
Name Description
index int
builderForValue ClassificationEvaluationMetrics.ConfidenceMetricsEntry.Builder
Returns
Type Description
ClassificationEvaluationMetrics.Builder

setConfusionMatrix(ClassificationEvaluationMetrics.ConfusionMatrix value)

public ClassificationEvaluationMetrics.Builder setConfusionMatrix(ClassificationEvaluationMetrics.ConfusionMatrix value)

Output only. Confusion matrix of the evaluation. Only set for MULTICLASS classification problems where number of labels is no more than 10. Only set for model level evaluation, not for evaluation per label.

.google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4;

Parameter
Name Description
value ClassificationEvaluationMetrics.ConfusionMatrix
Returns
Type Description
ClassificationEvaluationMetrics.Builder

setConfusionMatrix(ClassificationEvaluationMetrics.ConfusionMatrix.Builder builderForValue)

public ClassificationEvaluationMetrics.Builder setConfusionMatrix(ClassificationEvaluationMetrics.ConfusionMatrix.Builder builderForValue)

Output only. Confusion matrix of the evaluation. Only set for MULTICLASS classification problems where number of labels is no more than 10. Only set for model level evaluation, not for evaluation per label.

.google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4;

Parameter
Name Description
builderForValue ClassificationEvaluationMetrics.ConfusionMatrix.Builder
Returns
Type Description
ClassificationEvaluationMetrics.Builder

setField(Descriptors.FieldDescriptor field, Object value)

public ClassificationEvaluationMetrics.Builder setField(Descriptors.FieldDescriptor field, Object value)
Parameters
Name Description
field FieldDescriptor
value Object
Returns
Type Description
ClassificationEvaluationMetrics.Builder
Overrides

setLogLoss(float value)

public ClassificationEvaluationMetrics.Builder setLogLoss(float value)

Output only. The Log Loss metric.

float log_loss = 7;

Parameter
Name Description
value float

The logLoss to set.

Returns
Type Description
ClassificationEvaluationMetrics.Builder

This builder for chaining.

setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)

public ClassificationEvaluationMetrics.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
Parameters
Name Description
field FieldDescriptor
index int
value Object
Returns
Type Description
ClassificationEvaluationMetrics.Builder
Overrides

setUnknownFields(UnknownFieldSet unknownFields)

public final ClassificationEvaluationMetrics.Builder setUnknownFields(UnknownFieldSet unknownFields)
Parameter
Name Description
unknownFields UnknownFieldSet
Returns
Type Description
ClassificationEvaluationMetrics.Builder
Overrides