- 2.48.0 (latest)
- 2.47.0
- 2.46.0
- 2.45.0
- 2.44.0
- 2.43.0
- 2.42.0
- 2.41.0
- 2.40.0
- 2.39.0
- 2.37.0
- 2.36.0
- 2.35.0
- 2.34.0
- 2.33.0
- 2.32.0
- 2.31.0
- 2.30.0
- 2.29.0
- 2.28.0
- 2.27.0
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.18
- 2.2.3
- 2.1.23
public interface PredictResponseOrBuilder extends MessageOrBuilder
Implements
MessageOrBuilderMethods
containsMetadata(String key)
public abstract boolean containsMetadata(String key)
Additional domain-specific prediction response metadata.
For Image Object Detection:
max_bounding_box_count
- (int64) At most that many bounding boxes per image could have been returned.For Text Sentiment:
sentiment_score
- (float, deprecated) A value between -1 and 1, -1 maps to least positive sentiment, while 1 maps to the most positive one and the higher the score, the more positive the sentiment in the document is. Yet these values are relative to the training data, so e.g. if all data was positive then -1 will be also positive (though the least). The sentiment_score shouldn't be confused with "score" or "magnitude" from the previous Natural Language Sentiment Analysis API.
map<string, string> metadata = 2;
Parameter | |
---|---|
Name | Description |
key | String |
Returns | |
---|---|
Type | Description |
boolean |
getMetadata() (deprecated)
public abstract Map<String,String> getMetadata()
Use #getMetadataMap() instead.
Returns | |
---|---|
Type | Description |
Map<String,String> |
getMetadataCount()
public abstract int getMetadataCount()
Additional domain-specific prediction response metadata.
For Image Object Detection:
max_bounding_box_count
- (int64) At most that many bounding boxes per image could have been returned.For Text Sentiment:
sentiment_score
- (float, deprecated) A value between -1 and 1, -1 maps to least positive sentiment, while 1 maps to the most positive one and the higher the score, the more positive the sentiment in the document is. Yet these values are relative to the training data, so e.g. if all data was positive then -1 will be also positive (though the least). The sentiment_score shouldn't be confused with "score" or "magnitude" from the previous Natural Language Sentiment Analysis API.
map<string, string> metadata = 2;
Returns | |
---|---|
Type | Description |
int |
getMetadataMap()
public abstract Map<String,String> getMetadataMap()
Additional domain-specific prediction response metadata.
For Image Object Detection:
max_bounding_box_count
- (int64) At most that many bounding boxes per image could have been returned.For Text Sentiment:
sentiment_score
- (float, deprecated) A value between -1 and 1, -1 maps to least positive sentiment, while 1 maps to the most positive one and the higher the score, the more positive the sentiment in the document is. Yet these values are relative to the training data, so e.g. if all data was positive then -1 will be also positive (though the least). The sentiment_score shouldn't be confused with "score" or "magnitude" from the previous Natural Language Sentiment Analysis API.
map<string, string> metadata = 2;
Returns | |
---|---|
Type | Description |
Map<String,String> |
getMetadataOrDefault(String key, String defaultValue)
public abstract String getMetadataOrDefault(String key, String defaultValue)
Additional domain-specific prediction response metadata.
For Image Object Detection:
max_bounding_box_count
- (int64) At most that many bounding boxes per image could have been returned.For Text Sentiment:
sentiment_score
- (float, deprecated) A value between -1 and 1, -1 maps to least positive sentiment, while 1 maps to the most positive one and the higher the score, the more positive the sentiment in the document is. Yet these values are relative to the training data, so e.g. if all data was positive then -1 will be also positive (though the least). The sentiment_score shouldn't be confused with "score" or "magnitude" from the previous Natural Language Sentiment Analysis API.
map<string, string> metadata = 2;
Parameters | |
---|---|
Name | Description |
key | String |
defaultValue | String |
Returns | |
---|---|
Type | Description |
String |
getMetadataOrThrow(String key)
public abstract String getMetadataOrThrow(String key)
Additional domain-specific prediction response metadata.
For Image Object Detection:
max_bounding_box_count
- (int64) At most that many bounding boxes per image could have been returned.For Text Sentiment:
sentiment_score
- (float, deprecated) A value between -1 and 1, -1 maps to least positive sentiment, while 1 maps to the most positive one and the higher the score, the more positive the sentiment in the document is. Yet these values are relative to the training data, so e.g. if all data was positive then -1 will be also positive (though the least). The sentiment_score shouldn't be confused with "score" or "magnitude" from the previous Natural Language Sentiment Analysis API.
map<string, string> metadata = 2;
Parameter | |
---|---|
Name | Description |
key | String |
Returns | |
---|---|
Type | Description |
String |
getPayload(int index)
public abstract AnnotationPayload getPayload(int index)
Prediction result. Translation and Text Sentiment will return precisely one payload.
repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1;
Parameter | |
---|---|
Name | Description |
index | int |
Returns | |
---|---|
Type | Description |
AnnotationPayload |
getPayloadCount()
public abstract int getPayloadCount()
Prediction result. Translation and Text Sentiment will return precisely one payload.
repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1;
Returns | |
---|---|
Type | Description |
int |
getPayloadList()
public abstract List<AnnotationPayload> getPayloadList()
Prediction result. Translation and Text Sentiment will return precisely one payload.
repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1;
Returns | |
---|---|
Type | Description |
List<AnnotationPayload> |
getPayloadOrBuilder(int index)
public abstract AnnotationPayloadOrBuilder getPayloadOrBuilder(int index)
Prediction result. Translation and Text Sentiment will return precisely one payload.
repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1;
Parameter | |
---|---|
Name | Description |
index | int |
Returns | |
---|---|
Type | Description |
AnnotationPayloadOrBuilder |
getPayloadOrBuilderList()
public abstract List<? extends AnnotationPayloadOrBuilder> getPayloadOrBuilderList()
Prediction result. Translation and Text Sentiment will return precisely one payload.
repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1;
Returns | |
---|---|
Type | Description |
List<? extends com.google.cloud.automl.v1beta1.AnnotationPayloadOrBuilder> |
getPreprocessedInput()
public abstract ExamplePayload getPreprocessedInput()
The preprocessed example that AutoML actually makes prediction on. Empty if AutoML does not preprocess the input example.
- For Text Extraction: If the input is a .pdf file, the OCR'ed text will be provided in document_text.
.google.cloud.automl.v1beta1.ExamplePayload preprocessed_input = 3;
Returns | |
---|---|
Type | Description |
ExamplePayload | The preprocessedInput. |
getPreprocessedInputOrBuilder()
public abstract ExamplePayloadOrBuilder getPreprocessedInputOrBuilder()
The preprocessed example that AutoML actually makes prediction on. Empty if AutoML does not preprocess the input example.
- For Text Extraction: If the input is a .pdf file, the OCR'ed text will be provided in document_text.
.google.cloud.automl.v1beta1.ExamplePayload preprocessed_input = 3;
Returns | |
---|---|
Type | Description |
ExamplePayloadOrBuilder |
hasPreprocessedInput()
public abstract boolean hasPreprocessedInput()
The preprocessed example that AutoML actually makes prediction on. Empty if AutoML does not preprocess the input example.
- For Text Extraction: If the input is a .pdf file, the OCR'ed text will be provided in document_text.
.google.cloud.automl.v1beta1.ExamplePayload preprocessed_input = 3;
Returns | |
---|---|
Type | Description |
boolean | Whether the preprocessedInput field is set. |