public static final class ClassificationProto.ClassificationEvaluationMetrics extends GeneratedMessageV3 implements ClassificationProto.ClassificationEvaluationMetricsOrBuilder
Model evaluation metrics for classification problems.
Note: For Video Classification this metrics only describe quality of the
Video Classification predictions of "segment_classification" type.
Protobuf type google.cloud.automl.v1beta1.ClassificationEvaluationMetrics
Static Fields
ANNOTATION_SPEC_ID_FIELD_NUMBER
public static final int ANNOTATION_SPEC_ID_FIELD_NUMBER
Field Value
AU_PRC_FIELD_NUMBER
public static final int AU_PRC_FIELD_NUMBER
Field Value
AU_ROC_FIELD_NUMBER
public static final int AU_ROC_FIELD_NUMBER
Field Value
BASE_AU_PRC_FIELD_NUMBER
public static final int BASE_AU_PRC_FIELD_NUMBER
Field Value
CONFIDENCE_METRICS_ENTRY_FIELD_NUMBER
public static final int CONFIDENCE_METRICS_ENTRY_FIELD_NUMBER
Field Value
CONFUSION_MATRIX_FIELD_NUMBER
public static final int CONFUSION_MATRIX_FIELD_NUMBER
Field Value
LOG_LOSS_FIELD_NUMBER
public static final int LOG_LOSS_FIELD_NUMBER
Field Value
Static Methods
getDefaultInstance()
public static ClassificationProto.ClassificationEvaluationMetrics getDefaultInstance()
Returns
getDescriptor()
public static final Descriptors.Descriptor getDescriptor()
Returns
newBuilder()
public static ClassificationProto.ClassificationEvaluationMetrics.Builder newBuilder()
Returns
newBuilder(ClassificationProto.ClassificationEvaluationMetrics prototype)
public static ClassificationProto.ClassificationEvaluationMetrics.Builder newBuilder(ClassificationProto.ClassificationEvaluationMetrics prototype)
Parameter
Returns
public static ClassificationProto.ClassificationEvaluationMetrics parseDelimitedFrom(InputStream input)
Parameter
Returns
Exceptions
public static ClassificationProto.ClassificationEvaluationMetrics parseDelimitedFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
parseFrom(byte[] data)
public static ClassificationProto.ClassificationEvaluationMetrics parseFrom(byte[] data)
Parameter
Name | Description |
data | byte[]
|
Returns
Exceptions
parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)
public static ClassificationProto.ClassificationEvaluationMetrics parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
parseFrom(ByteString data)
public static ClassificationProto.ClassificationEvaluationMetrics parseFrom(ByteString data)
Parameter
Returns
Exceptions
parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)
public static ClassificationProto.ClassificationEvaluationMetrics parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static ClassificationProto.ClassificationEvaluationMetrics parseFrom(CodedInputStream input)
Parameter
Returns
Exceptions
public static ClassificationProto.ClassificationEvaluationMetrics parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static ClassificationProto.ClassificationEvaluationMetrics parseFrom(InputStream input)
Parameter
Returns
Exceptions
public static ClassificationProto.ClassificationEvaluationMetrics parseFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
parseFrom(ByteBuffer data)
public static ClassificationProto.ClassificationEvaluationMetrics parseFrom(ByteBuffer data)
Parameter
Returns
Exceptions
parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)
public static ClassificationProto.ClassificationEvaluationMetrics parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
parser()
public static Parser<ClassificationProto.ClassificationEvaluationMetrics> parser()
Returns
Methods
equals(Object obj)
public boolean equals(Object obj)
Parameter
Returns
Overrides
getAnnotationSpecId(int index)
public String getAnnotationSpecId(int index)
Output only. The annotation spec ids used for this evaluation.
repeated string annotation_spec_id = 5;
Parameter
Name | Description |
index | int
The index of the element to return.
|
Returns
Type | Description |
String | The annotationSpecId at the given index.
|
getAnnotationSpecIdBytes(int index)
public ByteString getAnnotationSpecIdBytes(int index)
Output only. The annotation spec ids used for this evaluation.
repeated string annotation_spec_id = 5;
Parameter
Name | Description |
index | int
The index of the value to return.
|
Returns
Type | Description |
ByteString | The bytes of the annotationSpecId at the given index.
|
getAnnotationSpecIdCount()
public int getAnnotationSpecIdCount()
Output only. The annotation spec ids used for this evaluation.
repeated string annotation_spec_id = 5;
Returns
Type | Description |
int | The count of annotationSpecId.
|
getAnnotationSpecIdList()
public ProtocolStringList getAnnotationSpecIdList()
Output only. The annotation spec ids used for this evaluation.
repeated string annotation_spec_id = 5;
Returns
getAuPrc()
Output only. The Area Under Precision-Recall Curve metric. Micro-averaged
for the overall evaluation.
float au_prc = 1;
Returns
Type | Description |
float | The auPrc.
|
getAuRoc()
Output only. The Area Under Receiver Operating Characteristic curve metric.
Micro-averaged for the overall evaluation.
float au_roc = 6;
Returns
Type | Description |
float | The auRoc.
|
getBaseAuPrc()
public float getBaseAuPrc()
Output only. The Area Under Precision-Recall Curve metric based on priors.
Micro-averaged for the overall evaluation.
Deprecated.
float base_au_prc = 2 [deprecated = true];
Returns
Type | Description |
float | The baseAuPrc.
|
getConfidenceMetricsEntry(int index)
public ClassificationProto.ClassificationEvaluationMetrics.ConfidenceMetricsEntry getConfidenceMetricsEntry(int index)
Output only. Metrics for each confidence_threshold in
0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
position_threshold = INT32_MAX_VALUE.
ROC and precision-recall curves, and other aggregated metrics are derived
from them. The confidence metrics entries may also be supplied for
additional values of position_threshold, but from these no aggregated
metrics are computed.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;
Parameter
Returns
getConfidenceMetricsEntryCount()
public int getConfidenceMetricsEntryCount()
Output only. Metrics for each confidence_threshold in
0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
position_threshold = INT32_MAX_VALUE.
ROC and precision-recall curves, and other aggregated metrics are derived
from them. The confidence metrics entries may also be supplied for
additional values of position_threshold, but from these no aggregated
metrics are computed.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;
Returns
getConfidenceMetricsEntryList()
public List<ClassificationProto.ClassificationEvaluationMetrics.ConfidenceMetricsEntry> getConfidenceMetricsEntryList()
Output only. Metrics for each confidence_threshold in
0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
position_threshold = INT32_MAX_VALUE.
ROC and precision-recall curves, and other aggregated metrics are derived
from them. The confidence metrics entries may also be supplied for
additional values of position_threshold, but from these no aggregated
metrics are computed.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;
Returns
getConfidenceMetricsEntryOrBuilder(int index)
public ClassificationProto.ClassificationEvaluationMetrics.ConfidenceMetricsEntryOrBuilder getConfidenceMetricsEntryOrBuilder(int index)
Output only. Metrics for each confidence_threshold in
0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
position_threshold = INT32_MAX_VALUE.
ROC and precision-recall curves, and other aggregated metrics are derived
from them. The confidence metrics entries may also be supplied for
additional values of position_threshold, but from these no aggregated
metrics are computed.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;
Parameter
Returns
getConfidenceMetricsEntryOrBuilderList()
public List<? extends ClassificationProto.ClassificationEvaluationMetrics.ConfidenceMetricsEntryOrBuilder> getConfidenceMetricsEntryOrBuilderList()
Output only. Metrics for each confidence_threshold in
0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
position_threshold = INT32_MAX_VALUE.
ROC and precision-recall curves, and other aggregated metrics are derived
from them. The confidence metrics entries may also be supplied for
additional values of position_threshold, but from these no aggregated
metrics are computed.
repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3;
Returns
Type | Description |
List<? extends com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics.ConfidenceMetricsEntryOrBuilder> | |
getConfusionMatrix()
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix getConfusionMatrix()
Output only. Confusion matrix of the evaluation.
Only set for MULTICLASS classification problems where number
of labels is no more than 10.
Only set for model level evaluation, not for evaluation per label.
.google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4;
Returns
getConfusionMatrixOrBuilder()
public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrixOrBuilder getConfusionMatrixOrBuilder()
Output only. Confusion matrix of the evaluation.
Only set for MULTICLASS classification problems where number
of labels is no more than 10.
Only set for model level evaluation, not for evaluation per label.
.google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4;
Returns
getDefaultInstanceForType()
public ClassificationProto.ClassificationEvaluationMetrics getDefaultInstanceForType()
Returns
getLogLoss()
public float getLogLoss()
Output only. The Log Loss metric.
float log_loss = 7;
Returns
Type | Description |
float | The logLoss.
|
getParserForType()
public Parser<ClassificationProto.ClassificationEvaluationMetrics> getParserForType()
Returns
Overrides
getSerializedSize()
public int getSerializedSize()
Returns
Overrides
getUnknownFields()
public final UnknownFieldSet getUnknownFields()
Returns
Overrides
hasConfusionMatrix()
public boolean hasConfusionMatrix()
Output only. Confusion matrix of the evaluation.
Only set for MULTICLASS classification problems where number
of labels is no more than 10.
Only set for model level evaluation, not for evaluation per label.
.google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4;
Returns
Type | Description |
boolean | Whether the confusionMatrix field is set.
|
hashCode()
Returns
Overrides
internalGetFieldAccessorTable()
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
Overrides
isInitialized()
public final boolean isInitialized()
Returns
Overrides
newBuilderForType()
public ClassificationProto.ClassificationEvaluationMetrics.Builder newBuilderForType()
Returns
newBuilderForType(GeneratedMessageV3.BuilderParent parent)
protected ClassificationProto.ClassificationEvaluationMetrics.Builder newBuilderForType(GeneratedMessageV3.BuilderParent parent)
Parameter
Returns
Overrides
newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)
protected Object newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)
Parameter
Returns
Overrides
toBuilder()
public ClassificationProto.ClassificationEvaluationMetrics.Builder toBuilder()
Returns
writeTo(CodedOutputStream output)
public void writeTo(CodedOutputStream output)
Parameter
Overrides
Exceptions