- 3.57.0 (latest)
- 3.56.0
- 3.55.0
- 3.54.0
- 3.53.0
- 3.52.0
- 3.50.0
- 3.49.0
- 3.48.0
- 3.47.0
- 3.46.0
- 3.45.0
- 3.44.0
- 3.43.0
- 3.42.0
- 3.41.0
- 3.40.0
- 3.38.0
- 3.37.0
- 3.36.0
- 3.35.0
- 3.34.0
- 3.33.0
- 3.32.0
- 3.31.0
- 3.30.0
- 3.29.0
- 3.28.0
- 3.25.0
- 3.24.0
- 3.23.0
- 3.22.0
- 3.21.0
- 3.20.0
- 3.19.0
- 3.18.0
- 3.17.0
- 3.16.0
- 3.15.0
- 3.14.0
- 3.13.0
- 3.12.0
- 3.11.0
- 3.10.0
- 3.9.0
- 3.8.0
- 3.7.0
- 3.6.0
- 3.5.0
- 3.4.2
- 3.3.0
- 3.2.0
- 3.0.0
- 2.9.8
- 2.8.9
- 2.7.4
- 2.5.3
- 2.4.0
public static final class FeatureStatsAndAnomaly.Builder extends GeneratedMessageV3.Builder<FeatureStatsAndAnomaly.Builder> implements FeatureStatsAndAnomalyOrBuilder
Stats and Anomaly generated by FeatureMonitorJobs. Anomaly only includes Drift.
Protobuf type google.cloud.aiplatform.v1beta1.FeatureStatsAndAnomaly
Inheritance
Object > AbstractMessageLite.Builder<MessageType,BuilderType> > AbstractMessage.Builder<BuilderType> > GeneratedMessageV3.Builder > FeatureStatsAndAnomaly.BuilderImplements
FeatureStatsAndAnomalyOrBuilderStatic Methods
getDescriptor()
public static final Descriptors.Descriptor getDescriptor()
Returns | |
---|---|
Type | Description |
Descriptor |
Methods
addRepeatedField(Descriptors.FieldDescriptor field, Object value)
public FeatureStatsAndAnomaly.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
Parameters | |
---|---|
Name | Description |
field |
FieldDescriptor |
value |
Object |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
build()
public FeatureStatsAndAnomaly build()
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly |
buildPartial()
public FeatureStatsAndAnomaly buildPartial()
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly |
clear()
public FeatureStatsAndAnomaly.Builder clear()
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
clearDistributionDeviation()
public FeatureStatsAndAnomaly.Builder clearDistributionDeviation()
Deviation from the current stats to baseline stats.
- For categorical feature, the distribution distance is calculated by L-inifinity norm.
- For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence.
double distribution_deviation = 3;
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
This builder for chaining. |
clearDriftDetected()
public FeatureStatsAndAnomaly.Builder clearDriftDetected()
If set to true, indicates current stats is detected as and comparing with baseline stats.
bool drift_detected = 5;
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
This builder for chaining. |
clearDriftDetectionThreshold()
public FeatureStatsAndAnomaly.Builder clearDriftDetectionThreshold()
This is the threshold used when detecting drifts, which is set in FeatureMonitor.FeatureSelectionConfig.FeatureConfig.drift_threshold
double drift_detection_threshold = 4;
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
This builder for chaining. |
clearFeatureId()
public FeatureStatsAndAnomaly.Builder clearFeatureId()
Feature Id.
string feature_id = 1;
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
This builder for chaining. |
clearFeatureMonitorId()
public FeatureStatsAndAnomaly.Builder clearFeatureMonitorId()
The ID of the FeatureMonitor that this FeatureStatsAndAnomaly generated according to.
string feature_monitor_id = 8;
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
This builder for chaining. |
clearFeatureMonitorJobId()
public FeatureStatsAndAnomaly.Builder clearFeatureMonitorJobId()
The ID of the FeatureMonitorJob that generated this FeatureStatsAndAnomaly.
int64 feature_monitor_job_id = 7;
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
This builder for chaining. |
clearFeatureStats()
public FeatureStatsAndAnomaly.Builder clearFeatureStats()
Feature stats. e.g. histogram buckets. In the format of tensorflow.metadata.v0.DatasetFeatureStatistics.
.google.protobuf.Value feature_stats = 2;
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
clearField(Descriptors.FieldDescriptor field)
public FeatureStatsAndAnomaly.Builder clearField(Descriptors.FieldDescriptor field)
Parameter | |
---|---|
Name | Description |
field |
FieldDescriptor |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
clearOneof(Descriptors.OneofDescriptor oneof)
public FeatureStatsAndAnomaly.Builder clearOneof(Descriptors.OneofDescriptor oneof)
Parameter | |
---|---|
Name | Description |
oneof |
OneofDescriptor |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
clearStatsTime()
public FeatureStatsAndAnomaly.Builder clearStatsTime()
The timestamp we take snapshot for feature values to generate stats.
.google.protobuf.Timestamp stats_time = 6;
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
clone()
public FeatureStatsAndAnomaly.Builder clone()
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
getDefaultInstanceForType()
public FeatureStatsAndAnomaly getDefaultInstanceForType()
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly |
getDescriptorForType()
public Descriptors.Descriptor getDescriptorForType()
Returns | |
---|---|
Type | Description |
Descriptor |
getDistributionDeviation()
public double getDistributionDeviation()
Deviation from the current stats to baseline stats.
- For categorical feature, the distribution distance is calculated by L-inifinity norm.
- For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence.
double distribution_deviation = 3;
Returns | |
---|---|
Type | Description |
double |
The distributionDeviation. |
getDriftDetected()
public boolean getDriftDetected()
If set to true, indicates current stats is detected as and comparing with baseline stats.
bool drift_detected = 5;
Returns | |
---|---|
Type | Description |
boolean |
The driftDetected. |
getDriftDetectionThreshold()
public double getDriftDetectionThreshold()
This is the threshold used when detecting drifts, which is set in FeatureMonitor.FeatureSelectionConfig.FeatureConfig.drift_threshold
double drift_detection_threshold = 4;
Returns | |
---|---|
Type | Description |
double |
The driftDetectionThreshold. |
getFeatureId()
public String getFeatureId()
Feature Id.
string feature_id = 1;
Returns | |
---|---|
Type | Description |
String |
The featureId. |
getFeatureIdBytes()
public ByteString getFeatureIdBytes()
Feature Id.
string feature_id = 1;
Returns | |
---|---|
Type | Description |
ByteString |
The bytes for featureId. |
getFeatureMonitorId()
public String getFeatureMonitorId()
The ID of the FeatureMonitor that this FeatureStatsAndAnomaly generated according to.
string feature_monitor_id = 8;
Returns | |
---|---|
Type | Description |
String |
The featureMonitorId. |
getFeatureMonitorIdBytes()
public ByteString getFeatureMonitorIdBytes()
The ID of the FeatureMonitor that this FeatureStatsAndAnomaly generated according to.
string feature_monitor_id = 8;
Returns | |
---|---|
Type | Description |
ByteString |
The bytes for featureMonitorId. |
getFeatureMonitorJobId()
public long getFeatureMonitorJobId()
The ID of the FeatureMonitorJob that generated this FeatureStatsAndAnomaly.
int64 feature_monitor_job_id = 7;
Returns | |
---|---|
Type | Description |
long |
The featureMonitorJobId. |
getFeatureStats()
public Value getFeatureStats()
Feature stats. e.g. histogram buckets. In the format of tensorflow.metadata.v0.DatasetFeatureStatistics.
.google.protobuf.Value feature_stats = 2;
Returns | |
---|---|
Type | Description |
Value |
The featureStats. |
getFeatureStatsBuilder()
public Value.Builder getFeatureStatsBuilder()
Feature stats. e.g. histogram buckets. In the format of tensorflow.metadata.v0.DatasetFeatureStatistics.
.google.protobuf.Value feature_stats = 2;
Returns | |
---|---|
Type | Description |
Builder |
getFeatureStatsOrBuilder()
public ValueOrBuilder getFeatureStatsOrBuilder()
Feature stats. e.g. histogram buckets. In the format of tensorflow.metadata.v0.DatasetFeatureStatistics.
.google.protobuf.Value feature_stats = 2;
Returns | |
---|---|
Type | Description |
ValueOrBuilder |
getStatsTime()
public Timestamp getStatsTime()
The timestamp we take snapshot for feature values to generate stats.
.google.protobuf.Timestamp stats_time = 6;
Returns | |
---|---|
Type | Description |
Timestamp |
The statsTime. |
getStatsTimeBuilder()
public Timestamp.Builder getStatsTimeBuilder()
The timestamp we take snapshot for feature values to generate stats.
.google.protobuf.Timestamp stats_time = 6;
Returns | |
---|---|
Type | Description |
Builder |
getStatsTimeOrBuilder()
public TimestampOrBuilder getStatsTimeOrBuilder()
The timestamp we take snapshot for feature values to generate stats.
.google.protobuf.Timestamp stats_time = 6;
Returns | |
---|---|
Type | Description |
TimestampOrBuilder |
hasFeatureStats()
public boolean hasFeatureStats()
Feature stats. e.g. histogram buckets. In the format of tensorflow.metadata.v0.DatasetFeatureStatistics.
.google.protobuf.Value feature_stats = 2;
Returns | |
---|---|
Type | Description |
boolean |
Whether the featureStats field is set. |
hasStatsTime()
public boolean hasStatsTime()
The timestamp we take snapshot for feature values to generate stats.
.google.protobuf.Timestamp stats_time = 6;
Returns | |
---|---|
Type | Description |
boolean |
Whether the statsTime field is set. |
internalGetFieldAccessorTable()
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns | |
---|---|
Type | Description |
FieldAccessorTable |
isInitialized()
public final boolean isInitialized()
Returns | |
---|---|
Type | Description |
boolean |
mergeFeatureStats(Value value)
public FeatureStatsAndAnomaly.Builder mergeFeatureStats(Value value)
Feature stats. e.g. histogram buckets. In the format of tensorflow.metadata.v0.DatasetFeatureStatistics.
.google.protobuf.Value feature_stats = 2;
Parameter | |
---|---|
Name | Description |
value |
Value |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
mergeFrom(FeatureStatsAndAnomaly other)
public FeatureStatsAndAnomaly.Builder mergeFrom(FeatureStatsAndAnomaly other)
Parameter | |
---|---|
Name | Description |
other |
FeatureStatsAndAnomaly |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
public FeatureStatsAndAnomaly.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters | |
---|---|
Name | Description |
input |
CodedInputStream |
extensionRegistry |
ExtensionRegistryLite |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
Exceptions | |
---|---|
Type | Description |
IOException |
mergeFrom(Message other)
public FeatureStatsAndAnomaly.Builder mergeFrom(Message other)
Parameter | |
---|---|
Name | Description |
other |
Message |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
mergeStatsTime(Timestamp value)
public FeatureStatsAndAnomaly.Builder mergeStatsTime(Timestamp value)
The timestamp we take snapshot for feature values to generate stats.
.google.protobuf.Timestamp stats_time = 6;
Parameter | |
---|---|
Name | Description |
value |
Timestamp |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
mergeUnknownFields(UnknownFieldSet unknownFields)
public final FeatureStatsAndAnomaly.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
Parameter | |
---|---|
Name | Description |
unknownFields |
UnknownFieldSet |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
setDistributionDeviation(double value)
public FeatureStatsAndAnomaly.Builder setDistributionDeviation(double value)
Deviation from the current stats to baseline stats.
- For categorical feature, the distribution distance is calculated by L-inifinity norm.
- For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence.
double distribution_deviation = 3;
Parameter | |
---|---|
Name | Description |
value |
double The distributionDeviation to set. |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
This builder for chaining. |
setDriftDetected(boolean value)
public FeatureStatsAndAnomaly.Builder setDriftDetected(boolean value)
If set to true, indicates current stats is detected as and comparing with baseline stats.
bool drift_detected = 5;
Parameter | |
---|---|
Name | Description |
value |
boolean The driftDetected to set. |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
This builder for chaining. |
setDriftDetectionThreshold(double value)
public FeatureStatsAndAnomaly.Builder setDriftDetectionThreshold(double value)
This is the threshold used when detecting drifts, which is set in FeatureMonitor.FeatureSelectionConfig.FeatureConfig.drift_threshold
double drift_detection_threshold = 4;
Parameter | |
---|---|
Name | Description |
value |
double The driftDetectionThreshold to set. |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
This builder for chaining. |
setFeatureId(String value)
public FeatureStatsAndAnomaly.Builder setFeatureId(String value)
Feature Id.
string feature_id = 1;
Parameter | |
---|---|
Name | Description |
value |
String The featureId to set. |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
This builder for chaining. |
setFeatureIdBytes(ByteString value)
public FeatureStatsAndAnomaly.Builder setFeatureIdBytes(ByteString value)
Feature Id.
string feature_id = 1;
Parameter | |
---|---|
Name | Description |
value |
ByteString The bytes for featureId to set. |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
This builder for chaining. |
setFeatureMonitorId(String value)
public FeatureStatsAndAnomaly.Builder setFeatureMonitorId(String value)
The ID of the FeatureMonitor that this FeatureStatsAndAnomaly generated according to.
string feature_monitor_id = 8;
Parameter | |
---|---|
Name | Description |
value |
String The featureMonitorId to set. |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
This builder for chaining. |
setFeatureMonitorIdBytes(ByteString value)
public FeatureStatsAndAnomaly.Builder setFeatureMonitorIdBytes(ByteString value)
The ID of the FeatureMonitor that this FeatureStatsAndAnomaly generated according to.
string feature_monitor_id = 8;
Parameter | |
---|---|
Name | Description |
value |
ByteString The bytes for featureMonitorId to set. |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
This builder for chaining. |
setFeatureMonitorJobId(long value)
public FeatureStatsAndAnomaly.Builder setFeatureMonitorJobId(long value)
The ID of the FeatureMonitorJob that generated this FeatureStatsAndAnomaly.
int64 feature_monitor_job_id = 7;
Parameter | |
---|---|
Name | Description |
value |
long The featureMonitorJobId to set. |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
This builder for chaining. |
setFeatureStats(Value value)
public FeatureStatsAndAnomaly.Builder setFeatureStats(Value value)
Feature stats. e.g. histogram buckets. In the format of tensorflow.metadata.v0.DatasetFeatureStatistics.
.google.protobuf.Value feature_stats = 2;
Parameter | |
---|---|
Name | Description |
value |
Value |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
setFeatureStats(Value.Builder builderForValue)
public FeatureStatsAndAnomaly.Builder setFeatureStats(Value.Builder builderForValue)
Feature stats. e.g. histogram buckets. In the format of tensorflow.metadata.v0.DatasetFeatureStatistics.
.google.protobuf.Value feature_stats = 2;
Parameter | |
---|---|
Name | Description |
builderForValue |
Builder |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
setField(Descriptors.FieldDescriptor field, Object value)
public FeatureStatsAndAnomaly.Builder setField(Descriptors.FieldDescriptor field, Object value)
Parameters | |
---|---|
Name | Description |
field |
FieldDescriptor |
value |
Object |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
public FeatureStatsAndAnomaly.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
Parameters | |
---|---|
Name | Description |
field |
FieldDescriptor |
index |
int |
value |
Object |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
setStatsTime(Timestamp value)
public FeatureStatsAndAnomaly.Builder setStatsTime(Timestamp value)
The timestamp we take snapshot for feature values to generate stats.
.google.protobuf.Timestamp stats_time = 6;
Parameter | |
---|---|
Name | Description |
value |
Timestamp |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
setStatsTime(Timestamp.Builder builderForValue)
public FeatureStatsAndAnomaly.Builder setStatsTime(Timestamp.Builder builderForValue)
The timestamp we take snapshot for feature values to generate stats.
.google.protobuf.Timestamp stats_time = 6;
Parameter | |
---|---|
Name | Description |
builderForValue |
Builder |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |
setUnknownFields(UnknownFieldSet unknownFields)
public final FeatureStatsAndAnomaly.Builder setUnknownFields(UnknownFieldSet unknownFields)
Parameter | |
---|---|
Name | Description |
unknownFields |
UnknownFieldSet |
Returns | |
---|---|
Type | Description |
FeatureStatsAndAnomaly.Builder |