Interface FeatureStatsAnomalyOrBuilder (3.43.0)

public interface FeatureStatsAnomalyOrBuilder extends MessageOrBuilder

Implements

MessageOrBuilder

Methods

getAnomalyDetectionThreshold()

public abstract double getAnomalyDetectionThreshold()

This is the threshold used when detecting anomalies. The threshold can be changed by user, so this one might be different from ThresholdConfig.value.

double anomaly_detection_threshold = 9;

Returns
Type Description
double

The anomalyDetectionThreshold.

getAnomalyUri()

public abstract String getAnomalyUri()

Path of the anomaly file for current feature values in Cloud Storage bucket. Format: gs://<bucket_name>/<object_name>/anomalies. Example: gs://monitoring_bucket/feature_name/anomalies. Stats are stored as binary format with Protobuf message Anoamlies are stored as binary format with Protobuf message tensorflow.metadata.v0.AnomalyInfo.

string anomaly_uri = 4;

Returns
Type Description
String

The anomalyUri.

getAnomalyUriBytes()

public abstract ByteString getAnomalyUriBytes()

Path of the anomaly file for current feature values in Cloud Storage bucket. Format: gs://<bucket_name>/<object_name>/anomalies. Example: gs://monitoring_bucket/feature_name/anomalies. Stats are stored as binary format with Protobuf message Anoamlies are stored as binary format with Protobuf message tensorflow.metadata.v0.AnomalyInfo.

string anomaly_uri = 4;

Returns
Type Description
ByteString

The bytes for anomalyUri.

getDistributionDeviation()

public abstract double getDistributionDeviation()

Deviation from the current stats to baseline stats.

  1. For categorical feature, the distribution distance is calculated by L-inifinity norm.
  2. For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence.

double distribution_deviation = 5;

Returns
Type Description
double

The distributionDeviation.

getEndTime()

public abstract Timestamp getEndTime()

The end timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), end_time indicates the timestamp of the data used to generate stats (e.g. timestamp we take snapshots for feature values).

.google.protobuf.Timestamp end_time = 8;

Returns
Type Description
Timestamp

The endTime.

getEndTimeOrBuilder()

public abstract TimestampOrBuilder getEndTimeOrBuilder()

The end timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), end_time indicates the timestamp of the data used to generate stats (e.g. timestamp we take snapshots for feature values).

.google.protobuf.Timestamp end_time = 8;

Returns
Type Description
TimestampOrBuilder

getScore()

public abstract double getScore()

Feature importance score, only populated when cross-feature monitoring is enabled. For now only used to represent feature attribution score within range [0, 1] for ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_SKEW and ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_DRIFT.

double score = 1;

Returns
Type Description
double

The score.

getStartTime()

public abstract Timestamp getStartTime()

The start timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), start_time is only used to indicate the monitoring intervals, so it always equals to (end_time - monitoring_interval).

.google.protobuf.Timestamp start_time = 7;

Returns
Type Description
Timestamp

The startTime.

getStartTimeOrBuilder()

public abstract TimestampOrBuilder getStartTimeOrBuilder()

The start timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), start_time is only used to indicate the monitoring intervals, so it always equals to (end_time - monitoring_interval).

.google.protobuf.Timestamp start_time = 7;

Returns
Type Description
TimestampOrBuilder

getStatsUri()

public abstract String getStatsUri()

Path of the stats file for current feature values in Cloud Storage bucket. Format: gs://<bucket_name>/<object_name>/stats. Example: gs://monitoring_bucket/feature_name/stats. Stats are stored as binary format with Protobuf message tensorflow.metadata.v0.FeatureNameStatistics.

string stats_uri = 3;

Returns
Type Description
String

The statsUri.

getStatsUriBytes()

public abstract ByteString getStatsUriBytes()

Path of the stats file for current feature values in Cloud Storage bucket. Format: gs://<bucket_name>/<object_name>/stats. Example: gs://monitoring_bucket/feature_name/stats. Stats are stored as binary format with Protobuf message tensorflow.metadata.v0.FeatureNameStatistics.

string stats_uri = 3;

Returns
Type Description
ByteString

The bytes for statsUri.

hasEndTime()

public abstract boolean hasEndTime()

The end timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), end_time indicates the timestamp of the data used to generate stats (e.g. timestamp we take snapshots for feature values).

.google.protobuf.Timestamp end_time = 8;

Returns
Type Description
boolean

Whether the endTime field is set.

hasStartTime()

public abstract boolean hasStartTime()

The start timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), start_time is only used to indicate the monitoring intervals, so it always equals to (end_time - monitoring_interval).

.google.protobuf.Timestamp start_time = 7;

Returns
Type Description
boolean

Whether the startTime field is set.