Package com.google.cloud.aiplatform.v1 (3.25.0)

A client to Vertex AI API

The interfaces provided are listed below, along with usage samples.

DatasetServiceClient

Service Description: The service that manages Vertex AI Dataset and its child resources.

Sample for DatasetServiceClient:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (DatasetServiceClient datasetServiceClient = DatasetServiceClient.create()) {
   DatasetName name = DatasetName.of("[PROJECT]", "[LOCATION]", "[DATASET]");
   Dataset response = datasetServiceClient.getDataset(name);
 }
 

EndpointServiceClient

Service Description: A service for managing Vertex AI's Endpoints.

Sample for EndpointServiceClient:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (EndpointServiceClient endpointServiceClient = EndpointServiceClient.create()) {
   EndpointName name =
       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]");
   Endpoint response = endpointServiceClient.getEndpoint(name);
 }
 

FeaturestoreOnlineServingServiceClient

Service Description: A service for serving online feature values.

Sample for FeaturestoreOnlineServingServiceClient:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (FeaturestoreOnlineServingServiceClient featurestoreOnlineServingServiceClient =
     FeaturestoreOnlineServingServiceClient.create()) {
   EntityTypeName entityType =
       EntityTypeName.of("[PROJECT]", "[LOCATION]", "[FEATURESTORE]", "[ENTITY_TYPE]");
   ReadFeatureValuesResponse response =
       featurestoreOnlineServingServiceClient.readFeatureValues(entityType);
 }
 

FeaturestoreServiceClient

Service Description: The service that handles CRUD and List for resources for Featurestore.

Sample for FeaturestoreServiceClient:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (FeaturestoreServiceClient featurestoreServiceClient = FeaturestoreServiceClient.create()) {
   FeaturestoreName name = FeaturestoreName.of("[PROJECT]", "[LOCATION]", "[FEATURESTORE]");
   Featurestore response = featurestoreServiceClient.getFeaturestore(name);
 }
 

IndexEndpointServiceClient

Service Description: A service for managing Vertex AI's IndexEndpoints.

Sample for IndexEndpointServiceClient:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (IndexEndpointServiceClient indexEndpointServiceClient =
     IndexEndpointServiceClient.create()) {
   IndexEndpointName name = IndexEndpointName.of("[PROJECT]", "[LOCATION]", "[INDEX_ENDPOINT]");
   IndexEndpoint response = indexEndpointServiceClient.getIndexEndpoint(name);
 }
 

IndexServiceClient

Service Description: A service for creating and managing Vertex AI's Index resources.

Sample for IndexServiceClient:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (IndexServiceClient indexServiceClient = IndexServiceClient.create()) {
   IndexName name = IndexName.of("[PROJECT]", "[LOCATION]", "[INDEX]");
   Index response = indexServiceClient.getIndex(name);
 }
 

JobServiceClient

Service Description: A service for creating and managing Vertex AI's jobs.

Sample for JobServiceClient:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (JobServiceClient jobServiceClient = JobServiceClient.create()) {
   LocationName parent = LocationName.of("[PROJECT]", "[LOCATION]");
   CustomJob customJob = CustomJob.newBuilder().build();
   CustomJob response = jobServiceClient.createCustomJob(parent, customJob);
 }
 

MatchServiceClient

Service Description: MatchService is a Google managed service for efficient vector similarity search at scale.

Sample for MatchServiceClient:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (MatchServiceClient matchServiceClient = MatchServiceClient.create()) {
   FindNeighborsRequest request =
       FindNeighborsRequest.newBuilder()
           .setIndexEndpoint(
               IndexEndpointName.of("[PROJECT]", "[LOCATION]", "[INDEX_ENDPOINT]").toString())
           .setDeployedIndexId("deployedIndexId-1101212953")
           .addAllQueries(new ArrayList<FindNeighborsRequest.Query>())
           .setReturnFullDatapoint(true)
           .build();
   FindNeighborsResponse response = matchServiceClient.findNeighbors(request);
 }
 

MetadataServiceClient

Service Description: Service for reading and writing metadata entries.

Sample for MetadataServiceClient:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (MetadataServiceClient metadataServiceClient = MetadataServiceClient.create()) {
   MetadataStoreName name = MetadataStoreName.of("[PROJECT]", "[LOCATION]", "[METADATA_STORE]");
   MetadataStore response = metadataServiceClient.getMetadataStore(name);
 }
 

MigrationServiceClient

Service Description: A service that migrates resources from automl.googleapis.com, datalabeling.googleapis.com and ml.googleapis.com to Vertex AI.

Sample for MigrationServiceClient:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (MigrationServiceClient migrationServiceClient = MigrationServiceClient.create()) {
   GetLocationRequest request = GetLocationRequest.newBuilder().setName("name3373707").build();
   Location response = migrationServiceClient.getLocation(request);
 }
 

ModelServiceClient

Service Description: A service for managing Vertex AI's machine learning Models.

Sample for ModelServiceClient:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (ModelServiceClient modelServiceClient = ModelServiceClient.create()) {
   ModelName name = ModelName.of("[PROJECT]", "[LOCATION]", "[MODEL]");
   Model response = modelServiceClient.getModel(name);
 }
 

ModelGardenServiceClient

Service Description: The interface of Model Garden Service.

Sample for ModelGardenServiceClient:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (ModelGardenServiceClient modelGardenServiceClient = ModelGardenServiceClient.create()) {
   PublisherModelName name = PublisherModelName.of("[PUBLISHER]", "[MODEL]");
   PublisherModel response = modelGardenServiceClient.getPublisherModel(name);
 }
 

PipelineServiceClient

Service Description: A service for creating and managing Vertex AI's pipelines. This includes both TrainingPipeline resources (used for AutoML and custom training) and PipelineJob resources (used for Vertex AI Pipelines).

Sample for PipelineServiceClient:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (PipelineServiceClient pipelineServiceClient = PipelineServiceClient.create()) {
   LocationName parent = LocationName.of("[PROJECT]", "[LOCATION]");
   TrainingPipeline trainingPipeline = TrainingPipeline.newBuilder().build();
   TrainingPipeline response =
       pipelineServiceClient.createTrainingPipeline(parent, trainingPipeline);
 }
 

PredictionServiceClient

Service Description: A service for online predictions and explanations.

Sample for PredictionServiceClient:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   EndpointName endpoint =
       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]");
   List<Value> instances = new ArrayList<>();
   Value parameters = Value.newBuilder().setBoolValue(true).build();
   PredictResponse response = predictionServiceClient.predict(endpoint, instances, parameters);
 }
 

ScheduleServiceClient

Service Description: A service for creating and managing Vertex AI's Schedule resources to periodically launch shceudled runs to make API calls.

Sample for ScheduleServiceClient:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (ScheduleServiceClient scheduleServiceClient = ScheduleServiceClient.create()) {
   LocationName parent = LocationName.of("[PROJECT]", "[LOCATION]");
   Schedule schedule = Schedule.newBuilder().build();
   Schedule response = scheduleServiceClient.createSchedule(parent, schedule);
 }
 

SpecialistPoolServiceClient

Service Description: A service for creating and managing Customer SpecialistPools. When customers start Data Labeling jobs, they can reuse/create Specialist Pools to bring their own Specialists to label the data. Customers can add/remove Managers for the Specialist Pool on Cloud console, then Managers will get email notifications to manage Specialists and tasks on CrowdCompute console.

Sample for SpecialistPoolServiceClient:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (SpecialistPoolServiceClient specialistPoolServiceClient =
     SpecialistPoolServiceClient.create()) {
   SpecialistPoolName name =
       SpecialistPoolName.of("[PROJECT]", "[LOCATION]", "[SPECIALIST_POOL]");
   SpecialistPool response = specialistPoolServiceClient.getSpecialistPool(name);
 }
 

TensorboardServiceClient

Service Description: TensorboardService

Sample for TensorboardServiceClient:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (TensorboardServiceClient tensorboardServiceClient = TensorboardServiceClient.create()) {
   TensorboardName name = TensorboardName.of("[PROJECT]", "[LOCATION]", "[TENSORBOARD]");
   Tensorboard response = tensorboardServiceClient.getTensorboard(name);
 }
 

VizierServiceClient

Service Description: Vertex AI Vizier API.

Vertex AI Vizier is a service to solve blackbox optimization problems, such as tuning machine learning hyperparameters and searching over deep learning architectures.

Sample for VizierServiceClient:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (VizierServiceClient vizierServiceClient = VizierServiceClient.create()) {
   LocationName parent = LocationName.of("[PROJECT]", "[LOCATION]");
   Study study = Study.newBuilder().build();
   Study response = vizierServiceClient.createStudy(parent, study);
 }
 

Classes

AcceleratorTypeProto

ActiveLearningConfig

Parameters that configure the active learning pipeline. Active learning will label the data incrementally by several iterations. For every iteration, it will select a batch of data based on the sampling strategy.

Protobuf type google.cloud.aiplatform.v1.ActiveLearningConfig

ActiveLearningConfig.Builder

Parameters that configure the active learning pipeline. Active learning will label the data incrementally by several iterations. For every iteration, it will select a batch of data based on the sampling strategy.

Protobuf type google.cloud.aiplatform.v1.ActiveLearningConfig

AddContextArtifactsAndExecutionsRequest

Request message for MetadataService.AddContextArtifactsAndExecutions.

Protobuf type google.cloud.aiplatform.v1.AddContextArtifactsAndExecutionsRequest

AddContextArtifactsAndExecutionsRequest.Builder

Request message for MetadataService.AddContextArtifactsAndExecutions.

Protobuf type google.cloud.aiplatform.v1.AddContextArtifactsAndExecutionsRequest

AddContextArtifactsAndExecutionsResponse

Response message for MetadataService.AddContextArtifactsAndExecutions.

Protobuf type google.cloud.aiplatform.v1.AddContextArtifactsAndExecutionsResponse

AddContextArtifactsAndExecutionsResponse.Builder

Response message for MetadataService.AddContextArtifactsAndExecutions.

Protobuf type google.cloud.aiplatform.v1.AddContextArtifactsAndExecutionsResponse

AddContextChildrenRequest

Request message for MetadataService.AddContextChildren.

Protobuf type google.cloud.aiplatform.v1.AddContextChildrenRequest

AddContextChildrenRequest.Builder

Request message for MetadataService.AddContextChildren.

Protobuf type google.cloud.aiplatform.v1.AddContextChildrenRequest

AddContextChildrenResponse

Response message for MetadataService.AddContextChildren.

Protobuf type google.cloud.aiplatform.v1.AddContextChildrenResponse

AddContextChildrenResponse.Builder

Response message for MetadataService.AddContextChildren.

Protobuf type google.cloud.aiplatform.v1.AddContextChildrenResponse

AddExecutionEventsRequest

Request message for MetadataService.AddExecutionEvents.

Protobuf type google.cloud.aiplatform.v1.AddExecutionEventsRequest

AddExecutionEventsRequest.Builder

Request message for MetadataService.AddExecutionEvents.

Protobuf type google.cloud.aiplatform.v1.AddExecutionEventsRequest

AddExecutionEventsResponse

Response message for MetadataService.AddExecutionEvents.

Protobuf type google.cloud.aiplatform.v1.AddExecutionEventsResponse

AddExecutionEventsResponse.Builder

Response message for MetadataService.AddExecutionEvents.

Protobuf type google.cloud.aiplatform.v1.AddExecutionEventsResponse

AddTrialMeasurementRequest

Request message for VizierService.AddTrialMeasurement.

Protobuf type google.cloud.aiplatform.v1.AddTrialMeasurementRequest

AddTrialMeasurementRequest.Builder

Request message for VizierService.AddTrialMeasurement.

Protobuf type google.cloud.aiplatform.v1.AddTrialMeasurementRequest

Annotation

Used to assign specific AnnotationSpec to a particular area of a DataItem or the whole part of the DataItem.

Protobuf type google.cloud.aiplatform.v1.Annotation

Annotation.Builder

Used to assign specific AnnotationSpec to a particular area of a DataItem or the whole part of the DataItem.

Protobuf type google.cloud.aiplatform.v1.Annotation

AnnotationProto

AnnotationSpec

Identifies a concept with which DataItems may be annotated with.

Protobuf type google.cloud.aiplatform.v1.AnnotationSpec

AnnotationSpec.Builder

Identifies a concept with which DataItems may be annotated with.

Protobuf type google.cloud.aiplatform.v1.AnnotationSpec

AnnotationSpecName

AnnotationSpecName.Builder

Builder for projects/{project}/locations/{location}/datasets/{dataset}/annotationSpecs/{annotation_spec}.

AnnotationSpecProto

Artifact

Instance of a general artifact.

Protobuf type google.cloud.aiplatform.v1.Artifact

Artifact.Builder

Instance of a general artifact.

Protobuf type google.cloud.aiplatform.v1.Artifact

ArtifactName

ArtifactName.Builder

Builder for projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}.

ArtifactProto

Attribution

Attribution that explains a particular prediction output.

Protobuf type google.cloud.aiplatform.v1.Attribution

Attribution.Builder

Attribution that explains a particular prediction output.

Protobuf type google.cloud.aiplatform.v1.Attribution

AutomaticResources

A description of resources that to large degree are decided by Vertex AI, and require only a modest additional configuration. Each Model supporting these resources documents its specific guidelines.

Protobuf type google.cloud.aiplatform.v1.AutomaticResources

AutomaticResources.Builder

A description of resources that to large degree are decided by Vertex AI, and require only a modest additional configuration. Each Model supporting these resources documents its specific guidelines.

Protobuf type google.cloud.aiplatform.v1.AutomaticResources

AutoscalingMetricSpec

The metric specification that defines the target resource utilization (CPU utilization, accelerator's duty cycle, and so on) for calculating the desired replica count.

Protobuf type google.cloud.aiplatform.v1.AutoscalingMetricSpec

AutoscalingMetricSpec.Builder

The metric specification that defines the target resource utilization (CPU utilization, accelerator's duty cycle, and so on) for calculating the desired replica count.

Protobuf type google.cloud.aiplatform.v1.AutoscalingMetricSpec

AvroSource

The storage details for Avro input content.

Protobuf type google.cloud.aiplatform.v1.AvroSource

AvroSource.Builder

The storage details for Avro input content.

Protobuf type google.cloud.aiplatform.v1.AvroSource

BatchCreateFeaturesOperationMetadata

Details of operations that perform batch create Features.

Protobuf type google.cloud.aiplatform.v1.BatchCreateFeaturesOperationMetadata

BatchCreateFeaturesOperationMetadata.Builder

Details of operations that perform batch create Features.

Protobuf type google.cloud.aiplatform.v1.BatchCreateFeaturesOperationMetadata

BatchCreateFeaturesRequest

Request message for FeaturestoreService.BatchCreateFeatures.

Protobuf type google.cloud.aiplatform.v1.BatchCreateFeaturesRequest

BatchCreateFeaturesRequest.Builder

Request message for FeaturestoreService.BatchCreateFeatures.

Protobuf type google.cloud.aiplatform.v1.BatchCreateFeaturesRequest

BatchCreateFeaturesResponse

Response message for FeaturestoreService.BatchCreateFeatures.

Protobuf type google.cloud.aiplatform.v1.BatchCreateFeaturesResponse

BatchCreateFeaturesResponse.Builder

Response message for FeaturestoreService.BatchCreateFeatures.

Protobuf type google.cloud.aiplatform.v1.BatchCreateFeaturesResponse

BatchCreateTensorboardRunsRequest

Request message for TensorboardService.BatchCreateTensorboardRuns.

Protobuf type google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest

BatchCreateTensorboardRunsRequest.Builder

Request message for TensorboardService.BatchCreateTensorboardRuns.

Protobuf type google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest

BatchCreateTensorboardRunsResponse

Response message for TensorboardService.BatchCreateTensorboardRuns.

Protobuf type google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse

BatchCreateTensorboardRunsResponse.Builder

Response message for TensorboardService.BatchCreateTensorboardRuns.

Protobuf type google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse

BatchCreateTensorboardTimeSeriesRequest

Request message for TensorboardService.BatchCreateTensorboardTimeSeries.

Protobuf type google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest

BatchCreateTensorboardTimeSeriesRequest.Builder

Request message for TensorboardService.BatchCreateTensorboardTimeSeries.

Protobuf type google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest

BatchCreateTensorboardTimeSeriesResponse

Response message for TensorboardService.BatchCreateTensorboardTimeSeries.

Protobuf type google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse

BatchCreateTensorboardTimeSeriesResponse.Builder

Response message for TensorboardService.BatchCreateTensorboardTimeSeries.

Protobuf type google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse

BatchDedicatedResources

A description of resources that are used for performing batch operations, are dedicated to a Model, and need manual configuration.

Protobuf type google.cloud.aiplatform.v1.BatchDedicatedResources

BatchDedicatedResources.Builder

A description of resources that are used for performing batch operations, are dedicated to a Model, and need manual configuration.

Protobuf type google.cloud.aiplatform.v1.BatchDedicatedResources

BatchImportEvaluatedAnnotationsRequest

Request message for ModelService.BatchImportEvaluatedAnnotations

Protobuf type google.cloud.aiplatform.v1.BatchImportEvaluatedAnnotationsRequest

BatchImportEvaluatedAnnotationsRequest.Builder

Request message for ModelService.BatchImportEvaluatedAnnotations

Protobuf type google.cloud.aiplatform.v1.BatchImportEvaluatedAnnotationsRequest

BatchImportEvaluatedAnnotationsResponse

Response message for ModelService.BatchImportEvaluatedAnnotations

Protobuf type google.cloud.aiplatform.v1.BatchImportEvaluatedAnnotationsResponse

BatchImportEvaluatedAnnotationsResponse.Builder

Response message for ModelService.BatchImportEvaluatedAnnotations

Protobuf type google.cloud.aiplatform.v1.BatchImportEvaluatedAnnotationsResponse

BatchImportModelEvaluationSlicesRequest

Request message for ModelService.BatchImportModelEvaluationSlices

Protobuf type google.cloud.aiplatform.v1.BatchImportModelEvaluationSlicesRequest

BatchImportModelEvaluationSlicesRequest.Builder

Request message for ModelService.BatchImportModelEvaluationSlices

Protobuf type google.cloud.aiplatform.v1.BatchImportModelEvaluationSlicesRequest

BatchImportModelEvaluationSlicesResponse

Response message for ModelService.BatchImportModelEvaluationSlices

Protobuf type google.cloud.aiplatform.v1.BatchImportModelEvaluationSlicesResponse

BatchImportModelEvaluationSlicesResponse.Builder

Response message for ModelService.BatchImportModelEvaluationSlices

Protobuf type google.cloud.aiplatform.v1.BatchImportModelEvaluationSlicesResponse

BatchMigrateResourcesOperationMetadata

Runtime operation information for MigrationService.BatchMigrateResources.

Protobuf type google.cloud.aiplatform.v1.BatchMigrateResourcesOperationMetadata

BatchMigrateResourcesOperationMetadata.Builder

Runtime operation information for MigrationService.BatchMigrateResources.

Protobuf type google.cloud.aiplatform.v1.BatchMigrateResourcesOperationMetadata

BatchMigrateResourcesOperationMetadata.PartialResult

Represents a partial result in batch migration operation for one MigrateResourceRequest.

Protobuf type google.cloud.aiplatform.v1.BatchMigrateResourcesOperationMetadata.PartialResult

BatchMigrateResourcesOperationMetadata.PartialResult.Builder

Represents a partial result in batch migration operation for one MigrateResourceRequest.

Protobuf type google.cloud.aiplatform.v1.BatchMigrateResourcesOperationMetadata.PartialResult

BatchMigrateResourcesRequest

Request message for MigrationService.BatchMigrateResources.

Protobuf type google.cloud.aiplatform.v1.BatchMigrateResourcesRequest

BatchMigrateResourcesRequest.Builder

Request message for MigrationService.BatchMigrateResources.

Protobuf type google.cloud.aiplatform.v1.BatchMigrateResourcesRequest

BatchMigrateResourcesResponse

Response message for MigrationService.BatchMigrateResources.

Protobuf type google.cloud.aiplatform.v1.BatchMigrateResourcesResponse

BatchMigrateResourcesResponse.Builder

Response message for MigrationService.BatchMigrateResources.

Protobuf type google.cloud.aiplatform.v1.BatchMigrateResourcesResponse

BatchPredictionJob

A job that uses a Model to produce predictions on multiple input instances. If predictions for significant portion of the instances fail, the job may finish without attempting predictions for all remaining instances.

Protobuf type google.cloud.aiplatform.v1.BatchPredictionJob

BatchPredictionJob.Builder

A job that uses a Model to produce predictions on multiple input instances. If predictions for significant portion of the instances fail, the job may finish without attempting predictions for all remaining instances.

Protobuf type google.cloud.aiplatform.v1.BatchPredictionJob

BatchPredictionJob.InputConfig

Configures the input to BatchPredictionJob. See Model.supported_input_storage_formats for Model's supported input formats, and how instances should be expressed via any of them.

Protobuf type google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig

BatchPredictionJob.InputConfig.Builder

Configures the input to BatchPredictionJob. See Model.supported_input_storage_formats for Model's supported input formats, and how instances should be expressed via any of them.

Protobuf type google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig

BatchPredictionJob.InstanceConfig

Configuration defining how to transform batch prediction input instances to the instances that the Model accepts.

Protobuf type google.cloud.aiplatform.v1.BatchPredictionJob.InstanceConfig

BatchPredictionJob.InstanceConfig.Builder

Configuration defining how to transform batch prediction input instances to the instances that the Model accepts.

Protobuf type google.cloud.aiplatform.v1.BatchPredictionJob.InstanceConfig

BatchPredictionJob.OutputConfig

Configures the output of BatchPredictionJob. See Model.supported_output_storage_formats for supported output formats, and how predictions are expressed via any of them.

Protobuf type google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig

BatchPredictionJob.OutputConfig.Builder

Configures the output of BatchPredictionJob. See Model.supported_output_storage_formats for supported output formats, and how predictions are expressed via any of them.

Protobuf type google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig

BatchPredictionJob.OutputInfo

Further describes this job's output. Supplements output_config.

Protobuf type google.cloud.aiplatform.v1.BatchPredictionJob.OutputInfo

BatchPredictionJob.OutputInfo.Builder

Further describes this job's output. Supplements output_config.

Protobuf type google.cloud.aiplatform.v1.BatchPredictionJob.OutputInfo

BatchPredictionJobName

BatchPredictionJobName.Builder

Builder for projects/{project}/locations/{location}/batchPredictionJobs/{batch_prediction_job}.

BatchPredictionJobProto

BatchReadFeatureValuesOperationMetadata

Details of operations that batch reads Feature values.

Protobuf type google.cloud.aiplatform.v1.BatchReadFeatureValuesOperationMetadata

BatchReadFeatureValuesOperationMetadata.Builder

Details of operations that batch reads Feature values.

Protobuf type google.cloud.aiplatform.v1.BatchReadFeatureValuesOperationMetadata

BatchReadFeatureValuesRequest

Request message for FeaturestoreService.BatchReadFeatureValues.

Protobuf type google.cloud.aiplatform.v1.BatchReadFeatureValuesRequest

BatchReadFeatureValuesRequest.Builder

Request message for FeaturestoreService.BatchReadFeatureValues.

Protobuf type google.cloud.aiplatform.v1.BatchReadFeatureValuesRequest

BatchReadFeatureValuesRequest.EntityTypeSpec

Selects Features of an EntityType to read values of and specifies read settings.

Protobuf type google.cloud.aiplatform.v1.BatchReadFeatureValuesRequest.EntityTypeSpec

BatchReadFeatureValuesRequest.EntityTypeSpec.Builder

Selects Features of an EntityType to read values of and specifies read settings.

Protobuf type google.cloud.aiplatform.v1.BatchReadFeatureValuesRequest.EntityTypeSpec

BatchReadFeatureValuesRequest.PassThroughField

Describe pass-through fields in read_instance source.

Protobuf type google.cloud.aiplatform.v1.BatchReadFeatureValuesRequest.PassThroughField

BatchReadFeatureValuesRequest.PassThroughField.Builder

Describe pass-through fields in read_instance source.

Protobuf type google.cloud.aiplatform.v1.BatchReadFeatureValuesRequest.PassThroughField

BatchReadFeatureValuesResponse

Response message for FeaturestoreService.BatchReadFeatureValues.

Protobuf type google.cloud.aiplatform.v1.BatchReadFeatureValuesResponse

BatchReadFeatureValuesResponse.Builder

Response message for FeaturestoreService.BatchReadFeatureValues.

Protobuf type google.cloud.aiplatform.v1.BatchReadFeatureValuesResponse

BatchReadTensorboardTimeSeriesDataRequest

Request message for TensorboardService.BatchReadTensorboardTimeSeriesData.

Protobuf type google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest

BatchReadTensorboardTimeSeriesDataRequest.Builder

Request message for TensorboardService.BatchReadTensorboardTimeSeriesData.

Protobuf type google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest

BatchReadTensorboardTimeSeriesDataResponse

Response message for TensorboardService.BatchReadTensorboardTimeSeriesData.

Protobuf type google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse

BatchReadTensorboardTimeSeriesDataResponse.Builder

Response message for TensorboardService.BatchReadTensorboardTimeSeriesData.

Protobuf type google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse

BigQueryDestination

The BigQuery location for the output content.

Protobuf type google.cloud.aiplatform.v1.BigQueryDestination

BigQueryDestination.Builder

The BigQuery location for the output content.

Protobuf type google.cloud.aiplatform.v1.BigQueryDestination

BigQuerySource

The BigQuery location for the input content.

Protobuf type google.cloud.aiplatform.v1.BigQuerySource

BigQuerySource.Builder

The BigQuery location for the input content.

Protobuf type google.cloud.aiplatform.v1.BigQuerySource

BlurBaselineConfig

Config for blur baseline.

When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383

Protobuf type google.cloud.aiplatform.v1.BlurBaselineConfig

BlurBaselineConfig.Builder

Config for blur baseline.

When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383

Protobuf type google.cloud.aiplatform.v1.BlurBaselineConfig

BoolArray

A list of boolean values.

Protobuf type google.cloud.aiplatform.v1.BoolArray

BoolArray.Builder

A list of boolean values.

Protobuf type google.cloud.aiplatform.v1.BoolArray

CancelBatchPredictionJobRequest

Request message for JobService.CancelBatchPredictionJob.

Protobuf type google.cloud.aiplatform.v1.CancelBatchPredictionJobRequest

CancelBatchPredictionJobRequest.Builder

Request message for JobService.CancelBatchPredictionJob.

Protobuf type google.cloud.aiplatform.v1.CancelBatchPredictionJobRequest

CancelCustomJobRequest

Request message for JobService.CancelCustomJob.

Protobuf type google.cloud.aiplatform.v1.CancelCustomJobRequest

CancelCustomJobRequest.Builder

Request message for JobService.CancelCustomJob.

Protobuf type google.cloud.aiplatform.v1.CancelCustomJobRequest

CancelDataLabelingJobRequest

Request message for JobService.CancelDataLabelingJob.

Protobuf type google.cloud.aiplatform.v1.CancelDataLabelingJobRequest

CancelDataLabelingJobRequest.Builder

Request message for JobService.CancelDataLabelingJob.

Protobuf type google.cloud.aiplatform.v1.CancelDataLabelingJobRequest

CancelHyperparameterTuningJobRequest

Request message for JobService.CancelHyperparameterTuningJob.

Protobuf type google.cloud.aiplatform.v1.CancelHyperparameterTuningJobRequest

CancelHyperparameterTuningJobRequest.Builder

Request message for JobService.CancelHyperparameterTuningJob.

Protobuf type google.cloud.aiplatform.v1.CancelHyperparameterTuningJobRequest

CancelNasJobRequest

Request message for JobService.CancelNasJob.

Protobuf type google.cloud.aiplatform.v1.CancelNasJobRequest

CancelNasJobRequest.Builder

Request message for JobService.CancelNasJob.

Protobuf type google.cloud.aiplatform.v1.CancelNasJobRequest

CancelPipelineJobRequest

Request message for PipelineService.CancelPipelineJob.

Protobuf type google.cloud.aiplatform.v1.CancelPipelineJobRequest

CancelPipelineJobRequest.Builder

Request message for PipelineService.CancelPipelineJob.

Protobuf type google.cloud.aiplatform.v1.CancelPipelineJobRequest

CancelTrainingPipelineRequest

Request message for PipelineService.CancelTrainingPipeline.

Protobuf type google.cloud.aiplatform.v1.CancelTrainingPipelineRequest

CancelTrainingPipelineRequest.Builder

Request message for PipelineService.CancelTrainingPipeline.

Protobuf type google.cloud.aiplatform.v1.CancelTrainingPipelineRequest

CheckTrialEarlyStoppingStateMetatdata

This message will be placed in the metadata field of a google.longrunning.Operation associated with a CheckTrialEarlyStoppingState request.

Protobuf type google.cloud.aiplatform.v1.CheckTrialEarlyStoppingStateMetatdata

CheckTrialEarlyStoppingStateMetatdata.Builder

This message will be placed in the metadata field of a google.longrunning.Operation associated with a CheckTrialEarlyStoppingState request.

Protobuf type google.cloud.aiplatform.v1.CheckTrialEarlyStoppingStateMetatdata

CheckTrialEarlyStoppingStateRequest

Request message for VizierService.CheckTrialEarlyStoppingState.

Protobuf type google.cloud.aiplatform.v1.CheckTrialEarlyStoppingStateRequest

CheckTrialEarlyStoppingStateRequest.Builder

Request message for VizierService.CheckTrialEarlyStoppingState.

Protobuf type google.cloud.aiplatform.v1.CheckTrialEarlyStoppingStateRequest

CheckTrialEarlyStoppingStateResponse

Response message for VizierService.CheckTrialEarlyStoppingState.

Protobuf type google.cloud.aiplatform.v1.CheckTrialEarlyStoppingStateResponse

CheckTrialEarlyStoppingStateResponse.Builder

Response message for VizierService.CheckTrialEarlyStoppingState.

Protobuf type google.cloud.aiplatform.v1.CheckTrialEarlyStoppingStateResponse

CompleteTrialRequest

Request message for VizierService.CompleteTrial.

Protobuf type google.cloud.aiplatform.v1.CompleteTrialRequest

CompleteTrialRequest.Builder

Request message for VizierService.CompleteTrial.

Protobuf type google.cloud.aiplatform.v1.CompleteTrialRequest

CompletionStats

Success and error statistics of processing multiple entities (for example, DataItems or structured data rows) in batch.

Protobuf type google.cloud.aiplatform.v1.CompletionStats

CompletionStats.Builder

Success and error statistics of processing multiple entities (for example, DataItems or structured data rows) in batch.

Protobuf type google.cloud.aiplatform.v1.CompletionStats

CompletionStatsProto

ContainerRegistryDestination

The Container Registry location for the container image.

Protobuf type google.cloud.aiplatform.v1.ContainerRegistryDestination

ContainerRegistryDestination.Builder

The Container Registry location for the container image.

Protobuf type google.cloud.aiplatform.v1.ContainerRegistryDestination

ContainerSpec

The spec of a Container.

Protobuf type google.cloud.aiplatform.v1.ContainerSpec

ContainerSpec.Builder

The spec of a Container.

Protobuf type google.cloud.aiplatform.v1.ContainerSpec

Context

Instance of a general context.

Protobuf type google.cloud.aiplatform.v1.Context

Context.Builder

Instance of a general context.

Protobuf type google.cloud.aiplatform.v1.Context

ContextName

ContextName.Builder

Builder for projects/{project}/locations/{location}/metadataStores/{metadata_store}/contexts/{context}.

ContextProto

CopyModelOperationMetadata

Details of ModelService.CopyModel operation.

Protobuf type google.cloud.aiplatform.v1.CopyModelOperationMetadata

CopyModelOperationMetadata.Builder

Details of ModelService.CopyModel operation.

Protobuf type google.cloud.aiplatform.v1.CopyModelOperationMetadata

CopyModelRequest

Request message for ModelService.CopyModel.

Protobuf type google.cloud.aiplatform.v1.CopyModelRequest

CopyModelRequest.Builder

Request message for ModelService.CopyModel.

Protobuf type google.cloud.aiplatform.v1.CopyModelRequest

CopyModelResponse

Response message of ModelService.CopyModel operation.

Protobuf type google.cloud.aiplatform.v1.CopyModelResponse

CopyModelResponse.Builder

Response message of ModelService.CopyModel operation.

Protobuf type google.cloud.aiplatform.v1.CopyModelResponse

CreateArtifactRequest

Request message for MetadataService.CreateArtifact.

Protobuf type google.cloud.aiplatform.v1.CreateArtifactRequest

CreateArtifactRequest.Builder

Request message for MetadataService.CreateArtifact.

Protobuf type google.cloud.aiplatform.v1.CreateArtifactRequest

CreateBatchPredictionJobRequest

Request message for JobService.CreateBatchPredictionJob.

Protobuf type google.cloud.aiplatform.v1.CreateBatchPredictionJobRequest

CreateBatchPredictionJobRequest.Builder

Request message for JobService.CreateBatchPredictionJob.

Protobuf type google.cloud.aiplatform.v1.CreateBatchPredictionJobRequest

CreateContextRequest

Request message for MetadataService.CreateContext.

Protobuf type google.cloud.aiplatform.v1.CreateContextRequest

CreateContextRequest.Builder

Request message for MetadataService.CreateContext.

Protobuf type google.cloud.aiplatform.v1.CreateContextRequest

CreateCustomJobRequest

Request message for JobService.CreateCustomJob.

Protobuf type google.cloud.aiplatform.v1.CreateCustomJobRequest

CreateCustomJobRequest.Builder

Request message for JobService.CreateCustomJob.

Protobuf type google.cloud.aiplatform.v1.CreateCustomJobRequest

CreateDataLabelingJobRequest

Request message for JobService.CreateDataLabelingJob.

Protobuf type google.cloud.aiplatform.v1.CreateDataLabelingJobRequest

CreateDataLabelingJobRequest.Builder

Request message for JobService.CreateDataLabelingJob.

Protobuf type google.cloud.aiplatform.v1.CreateDataLabelingJobRequest

CreateDatasetOperationMetadata

Runtime operation information for DatasetService.CreateDataset.

Protobuf type google.cloud.aiplatform.v1.CreateDatasetOperationMetadata

CreateDatasetOperationMetadata.Builder

Runtime operation information for DatasetService.CreateDataset.

Protobuf type google.cloud.aiplatform.v1.CreateDatasetOperationMetadata

CreateDatasetRequest

Request message for DatasetService.CreateDataset.

Protobuf type google.cloud.aiplatform.v1.CreateDatasetRequest

CreateDatasetRequest.Builder

Request message for DatasetService.CreateDataset.

Protobuf type google.cloud.aiplatform.v1.CreateDatasetRequest

CreateDatasetVersionOperationMetadata

Runtime operation information for DatasetService.CreateDatasetVersion.

Protobuf type google.cloud.aiplatform.v1.CreateDatasetVersionOperationMetadata

CreateDatasetVersionOperationMetadata.Builder

Runtime operation information for DatasetService.CreateDatasetVersion.

Protobuf type google.cloud.aiplatform.v1.CreateDatasetVersionOperationMetadata

CreateEndpointOperationMetadata

Runtime operation information for EndpointService.CreateEndpoint.

Protobuf type google.cloud.aiplatform.v1.CreateEndpointOperationMetadata

CreateEndpointOperationMetadata.Builder

Runtime operation information for EndpointService.CreateEndpoint.

Protobuf type google.cloud.aiplatform.v1.CreateEndpointOperationMetadata

CreateEndpointRequest

Request message for EndpointService.CreateEndpoint.

Protobuf type google.cloud.aiplatform.v1.CreateEndpointRequest

CreateEndpointRequest.Builder

Request message for EndpointService.CreateEndpoint.

Protobuf type google.cloud.aiplatform.v1.CreateEndpointRequest

CreateEntityTypeOperationMetadata

Details of operations that perform create EntityType.

Protobuf type google.cloud.aiplatform.v1.CreateEntityTypeOperationMetadata

CreateEntityTypeOperationMetadata.Builder

Details of operations that perform create EntityType.

Protobuf type google.cloud.aiplatform.v1.CreateEntityTypeOperationMetadata

CreateEntityTypeRequest

Request message for FeaturestoreService.CreateEntityType.

Protobuf type google.cloud.aiplatform.v1.CreateEntityTypeRequest

CreateEntityTypeRequest.Builder

Request message for FeaturestoreService.CreateEntityType.

Protobuf type google.cloud.aiplatform.v1.CreateEntityTypeRequest

CreateExecutionRequest

Request message for MetadataService.CreateExecution.

Protobuf type google.cloud.aiplatform.v1.CreateExecutionRequest

CreateExecutionRequest.Builder

Request message for MetadataService.CreateExecution.

Protobuf type google.cloud.aiplatform.v1.CreateExecutionRequest

CreateFeatureOperationMetadata

Details of operations that perform create Feature.

Protobuf type google.cloud.aiplatform.v1.CreateFeatureOperationMetadata

CreateFeatureOperationMetadata.Builder

Details of operations that perform create Feature.

Protobuf type google.cloud.aiplatform.v1.CreateFeatureOperationMetadata

CreateFeatureRequest

Request message for FeaturestoreService.CreateFeature.

Protobuf type google.cloud.aiplatform.v1.CreateFeatureRequest

CreateFeatureRequest.Builder

Request message for FeaturestoreService.CreateFeature.

Protobuf type google.cloud.aiplatform.v1.CreateFeatureRequest

CreateFeaturestoreOperationMetadata

Details of operations that perform create Featurestore.

Protobuf type google.cloud.aiplatform.v1.CreateFeaturestoreOperationMetadata

CreateFeaturestoreOperationMetadata.Builder

Details of operations that perform create Featurestore.

Protobuf type google.cloud.aiplatform.v1.CreateFeaturestoreOperationMetadata

CreateFeaturestoreRequest

Request message for FeaturestoreService.CreateFeaturestore.

Protobuf type google.cloud.aiplatform.v1.CreateFeaturestoreRequest

CreateFeaturestoreRequest.Builder

Request message for FeaturestoreService.CreateFeaturestore.

Protobuf type google.cloud.aiplatform.v1.CreateFeaturestoreRequest

CreateHyperparameterTuningJobRequest

Request message for JobService.CreateHyperparameterTuningJob.

Protobuf type google.cloud.aiplatform.v1.CreateHyperparameterTuningJobRequest

CreateHyperparameterTuningJobRequest.Builder

Request message for JobService.CreateHyperparameterTuningJob.

Protobuf type google.cloud.aiplatform.v1.CreateHyperparameterTuningJobRequest

CreateIndexEndpointOperationMetadata

Runtime operation information for IndexEndpointService.CreateIndexEndpoint.

Protobuf type google.cloud.aiplatform.v1.CreateIndexEndpointOperationMetadata

CreateIndexEndpointOperationMetadata.Builder

Runtime operation information for IndexEndpointService.CreateIndexEndpoint.

Protobuf type google.cloud.aiplatform.v1.CreateIndexEndpointOperationMetadata

CreateIndexEndpointRequest

Request message for IndexEndpointService.CreateIndexEndpoint.

Protobuf type google.cloud.aiplatform.v1.CreateIndexEndpointRequest

CreateIndexEndpointRequest.Builder

Request message for IndexEndpointService.CreateIndexEndpoint.

Protobuf type google.cloud.aiplatform.v1.CreateIndexEndpointRequest

CreateIndexOperationMetadata

Runtime operation information for IndexService.CreateIndex.

Protobuf type google.cloud.aiplatform.v1.CreateIndexOperationMetadata

CreateIndexOperationMetadata.Builder

Runtime operation information for IndexService.CreateIndex.

Protobuf type google.cloud.aiplatform.v1.CreateIndexOperationMetadata

CreateIndexRequest

Request message for IndexService.CreateIndex.

Protobuf type google.cloud.aiplatform.v1.CreateIndexRequest

CreateIndexRequest.Builder

Request message for IndexService.CreateIndex.

Protobuf type google.cloud.aiplatform.v1.CreateIndexRequest

CreateMetadataSchemaRequest

Request message for MetadataService.CreateMetadataSchema.

Protobuf type google.cloud.aiplatform.v1.CreateMetadataSchemaRequest

CreateMetadataSchemaRequest.Builder

Request message for MetadataService.CreateMetadataSchema.

Protobuf type google.cloud.aiplatform.v1.CreateMetadataSchemaRequest

CreateMetadataStoreOperationMetadata

Details of operations that perform MetadataService.CreateMetadataStore.

Protobuf type google.cloud.aiplatform.v1.CreateMetadataStoreOperationMetadata

CreateMetadataStoreOperationMetadata.Builder

Details of operations that perform MetadataService.CreateMetadataStore.

Protobuf type google.cloud.aiplatform.v1.CreateMetadataStoreOperationMetadata

CreateMetadataStoreRequest

Request message for MetadataService.CreateMetadataStore.

Protobuf type google.cloud.aiplatform.v1.CreateMetadataStoreRequest

CreateMetadataStoreRequest.Builder

Request message for MetadataService.CreateMetadataStore.

Protobuf type google.cloud.aiplatform.v1.CreateMetadataStoreRequest

CreateModelDeploymentMonitoringJobRequest

Request message for JobService.CreateModelDeploymentMonitoringJob.

Protobuf type google.cloud.aiplatform.v1.CreateModelDeploymentMonitoringJobRequest

CreateModelDeploymentMonitoringJobRequest.Builder

Request message for JobService.CreateModelDeploymentMonitoringJob.

Protobuf type google.cloud.aiplatform.v1.CreateModelDeploymentMonitoringJobRequest

CreateNasJobRequest

Request message for JobService.CreateNasJob.

Protobuf type google.cloud.aiplatform.v1.CreateNasJobRequest

CreateNasJobRequest.Builder

Request message for JobService.CreateNasJob.

Protobuf type google.cloud.aiplatform.v1.CreateNasJobRequest

CreatePipelineJobRequest

Request message for PipelineService.CreatePipelineJob.

Protobuf type google.cloud.aiplatform.v1.CreatePipelineJobRequest

CreatePipelineJobRequest.Builder

Request message for PipelineService.CreatePipelineJob.

Protobuf type google.cloud.aiplatform.v1.CreatePipelineJobRequest

CreateScheduleRequest

Request message for ScheduleService.CreateSchedule.

Protobuf type google.cloud.aiplatform.v1.CreateScheduleRequest

CreateScheduleRequest.Builder

Request message for ScheduleService.CreateSchedule.

Protobuf type google.cloud.aiplatform.v1.CreateScheduleRequest

CreateSpecialistPoolOperationMetadata

Runtime operation information for SpecialistPoolService.CreateSpecialistPool.

Protobuf type google.cloud.aiplatform.v1.CreateSpecialistPoolOperationMetadata

CreateSpecialistPoolOperationMetadata.Builder

Runtime operation information for SpecialistPoolService.CreateSpecialistPool.

Protobuf type google.cloud.aiplatform.v1.CreateSpecialistPoolOperationMetadata

CreateSpecialistPoolRequest

Request message for SpecialistPoolService.CreateSpecialistPool.

Protobuf type google.cloud.aiplatform.v1.CreateSpecialistPoolRequest

CreateSpecialistPoolRequest.Builder

Request message for SpecialistPoolService.CreateSpecialistPool.

Protobuf type google.cloud.aiplatform.v1.CreateSpecialistPoolRequest

CreateStudyRequest

Request message for VizierService.CreateStudy.

Protobuf type google.cloud.aiplatform.v1.CreateStudyRequest

CreateStudyRequest.Builder

Request message for VizierService.CreateStudy.

Protobuf type google.cloud.aiplatform.v1.CreateStudyRequest

CreateTensorboardExperimentRequest

Request message for TensorboardService.CreateTensorboardExperiment.

Protobuf type google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest

CreateTensorboardExperimentRequest.Builder

Request message for TensorboardService.CreateTensorboardExperiment.

Protobuf type google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest

CreateTensorboardOperationMetadata

Details of operations that perform create Tensorboard.

Protobuf type google.cloud.aiplatform.v1.CreateTensorboardOperationMetadata

CreateTensorboardOperationMetadata.Builder

Details of operations that perform create Tensorboard.

Protobuf type google.cloud.aiplatform.v1.CreateTensorboardOperationMetadata

CreateTensorboardRequest

Request message for TensorboardService.CreateTensorboard.

Protobuf type google.cloud.aiplatform.v1.CreateTensorboardRequest

CreateTensorboardRequest.Builder

Request message for TensorboardService.CreateTensorboard.

Protobuf type google.cloud.aiplatform.v1.CreateTensorboardRequest

CreateTensorboardRunRequest

Request message for TensorboardService.CreateTensorboardRun.

Protobuf type google.cloud.aiplatform.v1.CreateTensorboardRunRequest

CreateTensorboardRunRequest.Builder

Request message for TensorboardService.CreateTensorboardRun.

Protobuf type google.cloud.aiplatform.v1.CreateTensorboardRunRequest

CreateTensorboardTimeSeriesRequest

Request message for TensorboardService.CreateTensorboardTimeSeries.

Protobuf type google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest

CreateTensorboardTimeSeriesRequest.Builder

Request message for TensorboardService.CreateTensorboardTimeSeries.

Protobuf type google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest

CreateTrainingPipelineRequest

Request message for PipelineService.CreateTrainingPipeline.

Protobuf type google.cloud.aiplatform.v1.CreateTrainingPipelineRequest

CreateTrainingPipelineRequest.Builder

Request message for PipelineService.CreateTrainingPipeline.

Protobuf type google.cloud.aiplatform.v1.CreateTrainingPipelineRequest

CreateTrialRequest

Request message for VizierService.CreateTrial.

Protobuf type google.cloud.aiplatform.v1.CreateTrialRequest

CreateTrialRequest.Builder

Request message for VizierService.CreateTrial.

Protobuf type google.cloud.aiplatform.v1.CreateTrialRequest

CsvDestination

The storage details for CSV output content.

Protobuf type google.cloud.aiplatform.v1.CsvDestination

CsvDestination.Builder

The storage details for CSV output content.

Protobuf type google.cloud.aiplatform.v1.CsvDestination

CsvSource

The storage details for CSV input content.

Protobuf type google.cloud.aiplatform.v1.CsvSource

CsvSource.Builder

The storage details for CSV input content.

Protobuf type google.cloud.aiplatform.v1.CsvSource

CustomJob

Represents a job that runs custom workloads such as a Docker container or a Python package. A CustomJob can have multiple worker pools and each worker pool can have its own machine and input spec. A CustomJob will be cleaned up once the job enters terminal state (failed or succeeded).

Protobuf type google.cloud.aiplatform.v1.CustomJob

CustomJob.Builder

Represents a job that runs custom workloads such as a Docker container or a Python package. A CustomJob can have multiple worker pools and each worker pool can have its own machine and input spec. A CustomJob will be cleaned up once the job enters terminal state (failed or succeeded).

Protobuf type google.cloud.aiplatform.v1.CustomJob

CustomJobName

CustomJobName.Builder

Builder for projects/{project}/locations/{location}/customJobs/{custom_job}.

CustomJobProto

CustomJobSpec

Represents the spec of a CustomJob.

Protobuf type google.cloud.aiplatform.v1.CustomJobSpec

CustomJobSpec.Builder

Represents the spec of a CustomJob.

Protobuf type google.cloud.aiplatform.v1.CustomJobSpec

DataItem

A piece of data in a Dataset. Could be an image, a video, a document or plain text.

Protobuf type google.cloud.aiplatform.v1.DataItem

DataItem.Builder

A piece of data in a Dataset. Could be an image, a video, a document or plain text.

Protobuf type google.cloud.aiplatform.v1.DataItem

DataItemName

DataItemName.Builder

Builder for projects/{project}/locations/{location}/datasets/{dataset}/dataItems/{data_item}.

DataItemProto

DataItemView

A container for a single DataItem and Annotations on it.

Protobuf type google.cloud.aiplatform.v1.DataItemView

DataItemView.Builder

A container for a single DataItem and Annotations on it.

Protobuf type google.cloud.aiplatform.v1.DataItemView

DataLabelingJob

DataLabelingJob is used to trigger a human labeling job on unlabeled data from the following Dataset:

Protobuf type google.cloud.aiplatform.v1.DataLabelingJob

DataLabelingJob.Builder

DataLabelingJob is used to trigger a human labeling job on unlabeled data from the following Dataset:

Protobuf type google.cloud.aiplatform.v1.DataLabelingJob

DataLabelingJobName

DataLabelingJobName.Builder

Builder for projects/{project}/locations/{location}/dataLabelingJobs/{data_labeling_job}.

DataLabelingJobProto

Dataset

A collection of DataItems and Annotations on them.

Protobuf type google.cloud.aiplatform.v1.Dataset

Dataset.Builder

A collection of DataItems and Annotations on them.

Protobuf type google.cloud.aiplatform.v1.Dataset

DatasetName

DatasetName.Builder

Builder for projects/{project}/locations/{location}/datasets/{dataset}.

DatasetProto

DatasetServiceClient

Service Description: The service that manages Vertex AI Dataset and its child resources.

This class provides the ability to make remote calls to the backing service through method calls that map to API methods. Sample code to get started:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (DatasetServiceClient datasetServiceClient = DatasetServiceClient.create()) {
   DatasetName name = DatasetName.of("[PROJECT]", "[LOCATION]", "[DATASET]");
   Dataset response = datasetServiceClient.getDataset(name);
 }
 

Note: close() needs to be called on the DatasetServiceClient object to clean up resources such as threads. In the example above, try-with-resources is used, which automatically calls close().

The surface of this class includes several types of Java methods for each of the API's methods:

  1. A "flattened" method. With this type of method, the fields of the request type have been converted into function parameters. It may be the case that not all fields are available as parameters, and not every API method will have a flattened method entry point.
  2. A "request object" method. This type of method only takes one parameter, a request object, which must be constructed before the call. Not every API method will have a request object method.
  3. A "callable" method. This type of method takes no parameters and returns an immutable API callable object, which can be used to initiate calls to the service.

See the individual methods for example code.

Many parameters require resource names to be formatted in a particular way. To assist with these names, this class includes a format method for each type of name, and additionally a parse method to extract the individual identifiers contained within names that are returned.

This class can be customized by passing in a custom instance of DatasetServiceSettings to create(). For example:

To customize credentials:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 DatasetServiceSettings datasetServiceSettings =
     DatasetServiceSettings.newBuilder()
         .setCredentialsProvider(FixedCredentialsProvider.create(myCredentials))
         .build();
 DatasetServiceClient datasetServiceClient = DatasetServiceClient.create(datasetServiceSettings);
 

To customize the endpoint:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 DatasetServiceSettings datasetServiceSettings =
     DatasetServiceSettings.newBuilder().setEndpoint(myEndpoint).build();
 DatasetServiceClient datasetServiceClient = DatasetServiceClient.create(datasetServiceSettings);
 

Please refer to the GitHub repository's samples for more quickstart code snippets.

DatasetServiceClient.ListAnnotationsFixedSizeCollection

DatasetServiceClient.ListAnnotationsPage

DatasetServiceClient.ListAnnotationsPagedResponse

DatasetServiceClient.ListDataItemsFixedSizeCollection

DatasetServiceClient.ListDataItemsPage

DatasetServiceClient.ListDataItemsPagedResponse

DatasetServiceClient.ListDatasetsFixedSizeCollection

DatasetServiceClient.ListDatasetsPage

DatasetServiceClient.ListDatasetsPagedResponse

DatasetServiceClient.ListLocationsFixedSizeCollection

DatasetServiceClient.ListLocationsPage

DatasetServiceClient.ListLocationsPagedResponse

DatasetServiceClient.ListSavedQueriesFixedSizeCollection

DatasetServiceClient.ListSavedQueriesPage

DatasetServiceClient.ListSavedQueriesPagedResponse

DatasetServiceClient.SearchDataItemsFixedSizeCollection

DatasetServiceClient.SearchDataItemsPage

DatasetServiceClient.SearchDataItemsPagedResponse

DatasetServiceGrpc

The service that manages Vertex AI Dataset and its child resources.

DatasetServiceGrpc.DatasetServiceBlockingStub

A stub to allow clients to do synchronous rpc calls to service DatasetService.

The service that manages Vertex AI Dataset and its child resources.

DatasetServiceGrpc.DatasetServiceFutureStub

A stub to allow clients to do ListenableFuture-style rpc calls to service DatasetService.

The service that manages Vertex AI Dataset and its child resources.

DatasetServiceGrpc.DatasetServiceImplBase

Base class for the server implementation of the service DatasetService.

The service that manages Vertex AI Dataset and its child resources.

DatasetServiceGrpc.DatasetServiceStub

A stub to allow clients to do asynchronous rpc calls to service DatasetService.

The service that manages Vertex AI Dataset and its child resources.

DatasetServiceProto

DatasetServiceSettings

Settings class to configure an instance of DatasetServiceClient.

The default instance has everything set to sensible defaults:

  • The default service address (aiplatform.googleapis.com) and default port (443) are used.
  • Credentials are acquired automatically through Application Default Credentials.
  • Retries are configured for idempotent methods but not for non-idempotent methods.

The builder of this class is recursive, so contained classes are themselves builders. When build() is called, the tree of builders is called to create the complete settings object.

For example, to set the total timeout of getDataset to 30 seconds:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 DatasetServiceSettings.Builder datasetServiceSettingsBuilder =
     DatasetServiceSettings.newBuilder();
 datasetServiceSettingsBuilder
     .getDatasetSettings()
     .setRetrySettings(
         datasetServiceSettingsBuilder
             .getDatasetSettings()
             .getRetrySettings()
             .toBuilder()
             .setTotalTimeout(Duration.ofSeconds(30))
             .build());
 DatasetServiceSettings datasetServiceSettings = datasetServiceSettingsBuilder.build();
 

DatasetServiceSettings.Builder

Builder for DatasetServiceSettings.

DedicatedResources

A description of resources that are dedicated to a DeployedModel, and that need a higher degree of manual configuration.

Protobuf type google.cloud.aiplatform.v1.DedicatedResources

DedicatedResources.Builder

A description of resources that are dedicated to a DeployedModel, and that need a higher degree of manual configuration.

Protobuf type google.cloud.aiplatform.v1.DedicatedResources

DeleteArtifactRequest

Request message for MetadataService.DeleteArtifact.

Protobuf type google.cloud.aiplatform.v1.DeleteArtifactRequest

DeleteArtifactRequest.Builder

Request message for MetadataService.DeleteArtifact.

Protobuf type google.cloud.aiplatform.v1.DeleteArtifactRequest

DeleteBatchPredictionJobRequest

Request message for JobService.DeleteBatchPredictionJob.

Protobuf type google.cloud.aiplatform.v1.DeleteBatchPredictionJobRequest

DeleteBatchPredictionJobRequest.Builder

Request message for JobService.DeleteBatchPredictionJob.

Protobuf type google.cloud.aiplatform.v1.DeleteBatchPredictionJobRequest

DeleteContextRequest

Request message for MetadataService.DeleteContext.

Protobuf type google.cloud.aiplatform.v1.DeleteContextRequest

DeleteContextRequest.Builder

Request message for MetadataService.DeleteContext.

Protobuf type google.cloud.aiplatform.v1.DeleteContextRequest

DeleteCustomJobRequest

Request message for JobService.DeleteCustomJob.

Protobuf type google.cloud.aiplatform.v1.DeleteCustomJobRequest

DeleteCustomJobRequest.Builder

Request message for JobService.DeleteCustomJob.

Protobuf type google.cloud.aiplatform.v1.DeleteCustomJobRequest

DeleteDataLabelingJobRequest

Request message for JobService.DeleteDataLabelingJob.

Protobuf type google.cloud.aiplatform.v1.DeleteDataLabelingJobRequest

DeleteDataLabelingJobRequest.Builder

Request message for JobService.DeleteDataLabelingJob.

Protobuf type google.cloud.aiplatform.v1.DeleteDataLabelingJobRequest

DeleteDatasetRequest

Request message for DatasetService.DeleteDataset.

Protobuf type google.cloud.aiplatform.v1.DeleteDatasetRequest

DeleteDatasetRequest.Builder

Request message for DatasetService.DeleteDataset.

Protobuf type google.cloud.aiplatform.v1.DeleteDatasetRequest

DeleteEndpointRequest

Request message for EndpointService.DeleteEndpoint.

Protobuf type google.cloud.aiplatform.v1.DeleteEndpointRequest

DeleteEndpointRequest.Builder

Request message for EndpointService.DeleteEndpoint.

Protobuf type google.cloud.aiplatform.v1.DeleteEndpointRequest

DeleteEntityTypeRequest

Request message for [FeaturestoreService.DeleteEntityTypes][].

Protobuf type google.cloud.aiplatform.v1.DeleteEntityTypeRequest

DeleteEntityTypeRequest.Builder

Request message for [FeaturestoreService.DeleteEntityTypes][].

Protobuf type google.cloud.aiplatform.v1.DeleteEntityTypeRequest

DeleteExecutionRequest

Request message for MetadataService.DeleteExecution.

Protobuf type google.cloud.aiplatform.v1.DeleteExecutionRequest

DeleteExecutionRequest.Builder

Request message for MetadataService.DeleteExecution.

Protobuf type google.cloud.aiplatform.v1.DeleteExecutionRequest

DeleteFeatureRequest

Request message for FeaturestoreService.DeleteFeature.

Protobuf type google.cloud.aiplatform.v1.DeleteFeatureRequest

DeleteFeatureRequest.Builder

Request message for FeaturestoreService.DeleteFeature.

Protobuf type google.cloud.aiplatform.v1.DeleteFeatureRequest

DeleteFeatureValuesOperationMetadata

Details of operations that delete Feature values.

Protobuf type google.cloud.aiplatform.v1.DeleteFeatureValuesOperationMetadata

DeleteFeatureValuesOperationMetadata.Builder

Details of operations that delete Feature values.

Protobuf type google.cloud.aiplatform.v1.DeleteFeatureValuesOperationMetadata

DeleteFeatureValuesRequest

Request message for FeaturestoreService.DeleteFeatureValues.

Protobuf type google.cloud.aiplatform.v1.DeleteFeatureValuesRequest

DeleteFeatureValuesRequest.Builder

Request message for FeaturestoreService.DeleteFeatureValues.

Protobuf type google.cloud.aiplatform.v1.DeleteFeatureValuesRequest

DeleteFeatureValuesRequest.SelectEntity

Message to select entity. If an entity id is selected, all the feature values corresponding to the entity id will be deleted, including the entityId.

Protobuf type google.cloud.aiplatform.v1.DeleteFeatureValuesRequest.SelectEntity

DeleteFeatureValuesRequest.SelectEntity.Builder

Message to select entity. If an entity id is selected, all the feature values corresponding to the entity id will be deleted, including the entityId.

Protobuf type google.cloud.aiplatform.v1.DeleteFeatureValuesRequest.SelectEntity

DeleteFeatureValuesRequest.SelectTimeRangeAndFeature

Message to select time range and feature. Values of the selected feature generated within an inclusive time range will be deleted. Using this option permanently deletes the feature values from the specified feature IDs within the specified time range. This might include data from the online storage. If you want to retain any deleted historical data in the online storage, you must re-ingest it.

Protobuf type google.cloud.aiplatform.v1.DeleteFeatureValuesRequest.SelectTimeRangeAndFeature

DeleteFeatureValuesRequest.SelectTimeRangeAndFeature.Builder

Message to select time range and feature. Values of the selected feature generated within an inclusive time range will be deleted. Using this option permanently deletes the feature values from the specified feature IDs within the specified time range. This might include data from the online storage. If you want to retain any deleted historical data in the online storage, you must re-ingest it.

Protobuf type google.cloud.aiplatform.v1.DeleteFeatureValuesRequest.SelectTimeRangeAndFeature

DeleteFeatureValuesResponse

Response message for FeaturestoreService.DeleteFeatureValues.

Protobuf type google.cloud.aiplatform.v1.DeleteFeatureValuesResponse

DeleteFeatureValuesResponse.Builder

Response message for FeaturestoreService.DeleteFeatureValues.

Protobuf type google.cloud.aiplatform.v1.DeleteFeatureValuesResponse

DeleteFeatureValuesResponse.SelectEntity

Response message if the request uses the SelectEntity option.

Protobuf type google.cloud.aiplatform.v1.DeleteFeatureValuesResponse.SelectEntity

DeleteFeatureValuesResponse.SelectEntity.Builder

Response message if the request uses the SelectEntity option.

Protobuf type google.cloud.aiplatform.v1.DeleteFeatureValuesResponse.SelectEntity

DeleteFeatureValuesResponse.SelectTimeRangeAndFeature

Response message if the request uses the SelectTimeRangeAndFeature option.

Protobuf type google.cloud.aiplatform.v1.DeleteFeatureValuesResponse.SelectTimeRangeAndFeature

DeleteFeatureValuesResponse.SelectTimeRangeAndFeature.Builder

Response message if the request uses the SelectTimeRangeAndFeature option.

Protobuf type google.cloud.aiplatform.v1.DeleteFeatureValuesResponse.SelectTimeRangeAndFeature

DeleteFeaturestoreRequest

Request message for FeaturestoreService.DeleteFeaturestore.

Protobuf type google.cloud.aiplatform.v1.DeleteFeaturestoreRequest

DeleteFeaturestoreRequest.Builder

Request message for FeaturestoreService.DeleteFeaturestore.

Protobuf type google.cloud.aiplatform.v1.DeleteFeaturestoreRequest

DeleteHyperparameterTuningJobRequest

Request message for JobService.DeleteHyperparameterTuningJob.

Protobuf type google.cloud.aiplatform.v1.DeleteHyperparameterTuningJobRequest

DeleteHyperparameterTuningJobRequest.Builder

Request message for JobService.DeleteHyperparameterTuningJob.

Protobuf type google.cloud.aiplatform.v1.DeleteHyperparameterTuningJobRequest

DeleteIndexEndpointRequest

Request message for IndexEndpointService.DeleteIndexEndpoint.

Protobuf type google.cloud.aiplatform.v1.DeleteIndexEndpointRequest

DeleteIndexEndpointRequest.Builder

Request message for IndexEndpointService.DeleteIndexEndpoint.

Protobuf type google.cloud.aiplatform.v1.DeleteIndexEndpointRequest

DeleteIndexRequest

Request message for IndexService.DeleteIndex.

Protobuf type google.cloud.aiplatform.v1.DeleteIndexRequest

DeleteIndexRequest.Builder

Request message for IndexService.DeleteIndex.

Protobuf type google.cloud.aiplatform.v1.DeleteIndexRequest

DeleteMetadataStoreOperationMetadata

Details of operations that perform MetadataService.DeleteMetadataStore.

Protobuf type google.cloud.aiplatform.v1.DeleteMetadataStoreOperationMetadata

DeleteMetadataStoreOperationMetadata.Builder

Details of operations that perform MetadataService.DeleteMetadataStore.

Protobuf type google.cloud.aiplatform.v1.DeleteMetadataStoreOperationMetadata

DeleteMetadataStoreRequest

Request message for MetadataService.DeleteMetadataStore.

Protobuf type google.cloud.aiplatform.v1.DeleteMetadataStoreRequest

DeleteMetadataStoreRequest.Builder

Request message for MetadataService.DeleteMetadataStore.

Protobuf type google.cloud.aiplatform.v1.DeleteMetadataStoreRequest

DeleteModelDeploymentMonitoringJobRequest

Request message for JobService.DeleteModelDeploymentMonitoringJob.

Protobuf type google.cloud.aiplatform.v1.DeleteModelDeploymentMonitoringJobRequest

DeleteModelDeploymentMonitoringJobRequest.Builder

Request message for JobService.DeleteModelDeploymentMonitoringJob.

Protobuf type google.cloud.aiplatform.v1.DeleteModelDeploymentMonitoringJobRequest

DeleteModelRequest

Request message for ModelService.DeleteModel.

Protobuf type google.cloud.aiplatform.v1.DeleteModelRequest

DeleteModelRequest.Builder

Request message for ModelService.DeleteModel.

Protobuf type google.cloud.aiplatform.v1.DeleteModelRequest

DeleteModelVersionRequest

Request message for ModelService.DeleteModelVersion.

Protobuf type google.cloud.aiplatform.v1.DeleteModelVersionRequest

DeleteModelVersionRequest.Builder

Request message for ModelService.DeleteModelVersion.

Protobuf type google.cloud.aiplatform.v1.DeleteModelVersionRequest

DeleteNasJobRequest

Request message for JobService.DeleteNasJob.

Protobuf type google.cloud.aiplatform.v1.DeleteNasJobRequest

DeleteNasJobRequest.Builder

Request message for JobService.DeleteNasJob.

Protobuf type google.cloud.aiplatform.v1.DeleteNasJobRequest

DeleteOperationMetadata

Details of operations that perform deletes of any entities.

Protobuf type google.cloud.aiplatform.v1.DeleteOperationMetadata

DeleteOperationMetadata.Builder

Details of operations that perform deletes of any entities.

Protobuf type google.cloud.aiplatform.v1.DeleteOperationMetadata

DeletePipelineJobRequest

Request message for PipelineService.DeletePipelineJob.

Protobuf type google.cloud.aiplatform.v1.DeletePipelineJobRequest

DeletePipelineJobRequest.Builder

Request message for PipelineService.DeletePipelineJob.

Protobuf type google.cloud.aiplatform.v1.DeletePipelineJobRequest

DeleteSavedQueryRequest

Request message for DatasetService.DeleteSavedQuery.

Protobuf type google.cloud.aiplatform.v1.DeleteSavedQueryRequest

DeleteSavedQueryRequest.Builder

Request message for DatasetService.DeleteSavedQuery.

Protobuf type google.cloud.aiplatform.v1.DeleteSavedQueryRequest

DeleteScheduleRequest

Request message for ScheduleService.DeleteSchedule.

Protobuf type google.cloud.aiplatform.v1.DeleteScheduleRequest

DeleteScheduleRequest.Builder

Request message for ScheduleService.DeleteSchedule.

Protobuf type google.cloud.aiplatform.v1.DeleteScheduleRequest

DeleteSpecialistPoolRequest

Request message for SpecialistPoolService.DeleteSpecialistPool.

Protobuf type google.cloud.aiplatform.v1.DeleteSpecialistPoolRequest

DeleteSpecialistPoolRequest.Builder

Request message for SpecialistPoolService.DeleteSpecialistPool.

Protobuf type google.cloud.aiplatform.v1.DeleteSpecialistPoolRequest

DeleteStudyRequest

Request message for VizierService.DeleteStudy.

Protobuf type google.cloud.aiplatform.v1.DeleteStudyRequest

DeleteStudyRequest.Builder

Request message for VizierService.DeleteStudy.

Protobuf type google.cloud.aiplatform.v1.DeleteStudyRequest

DeleteTensorboardExperimentRequest

Request message for TensorboardService.DeleteTensorboardExperiment.

Protobuf type google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest

DeleteTensorboardExperimentRequest.Builder

Request message for TensorboardService.DeleteTensorboardExperiment.

Protobuf type google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest

DeleteTensorboardRequest

Request message for TensorboardService.DeleteTensorboard.

Protobuf type google.cloud.aiplatform.v1.DeleteTensorboardRequest

DeleteTensorboardRequest.Builder

Request message for TensorboardService.DeleteTensorboard.

Protobuf type google.cloud.aiplatform.v1.DeleteTensorboardRequest

DeleteTensorboardRunRequest

Request message for TensorboardService.DeleteTensorboardRun.

Protobuf type google.cloud.aiplatform.v1.DeleteTensorboardRunRequest

DeleteTensorboardRunRequest.Builder

Request message for TensorboardService.DeleteTensorboardRun.

Protobuf type google.cloud.aiplatform.v1.DeleteTensorboardRunRequest

DeleteTensorboardTimeSeriesRequest

Request message for TensorboardService.DeleteTensorboardTimeSeries.

Protobuf type google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest

DeleteTensorboardTimeSeriesRequest.Builder

Request message for TensorboardService.DeleteTensorboardTimeSeries.

Protobuf type google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest

DeleteTrainingPipelineRequest

Request message for PipelineService.DeleteTrainingPipeline.

Protobuf type google.cloud.aiplatform.v1.DeleteTrainingPipelineRequest

DeleteTrainingPipelineRequest.Builder

Request message for PipelineService.DeleteTrainingPipeline.

Protobuf type google.cloud.aiplatform.v1.DeleteTrainingPipelineRequest

DeleteTrialRequest

Request message for VizierService.DeleteTrial.

Protobuf type google.cloud.aiplatform.v1.DeleteTrialRequest

DeleteTrialRequest.Builder

Request message for VizierService.DeleteTrial.

Protobuf type google.cloud.aiplatform.v1.DeleteTrialRequest

DeployIndexOperationMetadata

Runtime operation information for IndexEndpointService.DeployIndex.

Protobuf type google.cloud.aiplatform.v1.DeployIndexOperationMetadata

DeployIndexOperationMetadata.Builder

Runtime operation information for IndexEndpointService.DeployIndex.

Protobuf type google.cloud.aiplatform.v1.DeployIndexOperationMetadata

DeployIndexRequest

Request message for IndexEndpointService.DeployIndex.

Protobuf type google.cloud.aiplatform.v1.DeployIndexRequest

DeployIndexRequest.Builder

Request message for IndexEndpointService.DeployIndex.

Protobuf type google.cloud.aiplatform.v1.DeployIndexRequest

DeployIndexResponse

Response message for IndexEndpointService.DeployIndex.

Protobuf type google.cloud.aiplatform.v1.DeployIndexResponse

DeployIndexResponse.Builder

Response message for IndexEndpointService.DeployIndex.

Protobuf type google.cloud.aiplatform.v1.DeployIndexResponse

DeployModelOperationMetadata

Runtime operation information for EndpointService.DeployModel.

Protobuf type google.cloud.aiplatform.v1.DeployModelOperationMetadata

DeployModelOperationMetadata.Builder

Runtime operation information for EndpointService.DeployModel.

Protobuf type google.cloud.aiplatform.v1.DeployModelOperationMetadata

DeployModelRequest

Request message for EndpointService.DeployModel.

Protobuf type google.cloud.aiplatform.v1.DeployModelRequest

DeployModelRequest.Builder

Request message for EndpointService.DeployModel.

Protobuf type google.cloud.aiplatform.v1.DeployModelRequest

DeployModelResponse

Response message for EndpointService.DeployModel.

Protobuf type google.cloud.aiplatform.v1.DeployModelResponse

DeployModelResponse.Builder

Response message for EndpointService.DeployModel.

Protobuf type google.cloud.aiplatform.v1.DeployModelResponse

DeployedIndex

A deployment of an Index. IndexEndpoints contain one or more DeployedIndexes.

Protobuf type google.cloud.aiplatform.v1.DeployedIndex

DeployedIndex.Builder

A deployment of an Index. IndexEndpoints contain one or more DeployedIndexes.

Protobuf type google.cloud.aiplatform.v1.DeployedIndex

DeployedIndexAuthConfig

Used to set up the auth on the DeployedIndex's private endpoint.

Protobuf type google.cloud.aiplatform.v1.DeployedIndexAuthConfig

DeployedIndexAuthConfig.AuthProvider

Configuration for an authentication provider, including support for JSON Web Token (JWT).

Protobuf type google.cloud.aiplatform.v1.DeployedIndexAuthConfig.AuthProvider

DeployedIndexAuthConfig.AuthProvider.Builder

Configuration for an authentication provider, including support for JSON Web Token (JWT).

Protobuf type google.cloud.aiplatform.v1.DeployedIndexAuthConfig.AuthProvider

DeployedIndexAuthConfig.Builder

Used to set up the auth on the DeployedIndex's private endpoint.

Protobuf type google.cloud.aiplatform.v1.DeployedIndexAuthConfig

DeployedIndexRef

Points to a DeployedIndex.

Protobuf type google.cloud.aiplatform.v1.DeployedIndexRef

DeployedIndexRef.Builder

Points to a DeployedIndex.

Protobuf type google.cloud.aiplatform.v1.DeployedIndexRef

DeployedIndexRefProto

DeployedModel

A deployment of a Model. Endpoints contain one or more DeployedModels.

Protobuf type google.cloud.aiplatform.v1.DeployedModel

DeployedModel.Builder

A deployment of a Model. Endpoints contain one or more DeployedModels.

Protobuf type google.cloud.aiplatform.v1.DeployedModel

DeployedModelNameProto

DeployedModelRef

Points to a DeployedModel.

Protobuf type google.cloud.aiplatform.v1.DeployedModelRef

DeployedModelRef.Builder

Points to a DeployedModel.

Protobuf type google.cloud.aiplatform.v1.DeployedModelRef

DestinationFeatureSetting

Protobuf type google.cloud.aiplatform.v1.DestinationFeatureSetting

DestinationFeatureSetting.Builder

Protobuf type google.cloud.aiplatform.v1.DestinationFeatureSetting

DiskSpec

Represents the spec of disk options.

Protobuf type google.cloud.aiplatform.v1.DiskSpec

DiskSpec.Builder

Represents the spec of disk options.

Protobuf type google.cloud.aiplatform.v1.DiskSpec

DoubleArray

A list of double values.

Protobuf type google.cloud.aiplatform.v1.DoubleArray

DoubleArray.Builder

A list of double values.

Protobuf type google.cloud.aiplatform.v1.DoubleArray

EncryptionSpec

Represents a customer-managed encryption key spec that can be applied to a top-level resource.

Protobuf type google.cloud.aiplatform.v1.EncryptionSpec

EncryptionSpec.Builder

Represents a customer-managed encryption key spec that can be applied to a top-level resource.

Protobuf type google.cloud.aiplatform.v1.EncryptionSpec

EncryptionSpecProto

Endpoint

Models are deployed into it, and afterwards Endpoint is called to obtain predictions and explanations.

Protobuf type google.cloud.aiplatform.v1.Endpoint

Endpoint.Builder

Models are deployed into it, and afterwards Endpoint is called to obtain predictions and explanations.

Protobuf type google.cloud.aiplatform.v1.Endpoint

EndpointName

EndpointName.Builder

Builder for projects/{project}/locations/{location}/endpoints/{endpoint}.

EndpointName.ProjectLocationPublisherModelBuilder

Builder for projects/{project}/locations/{location}/publishers/{publisher}/models/{model}.

EndpointProto

EndpointServiceClient

Service Description: A service for managing Vertex AI's Endpoints.

This class provides the ability to make remote calls to the backing service through method calls that map to API methods. Sample code to get started:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (EndpointServiceClient endpointServiceClient = EndpointServiceClient.create()) {
   EndpointName name =
       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]");
   Endpoint response = endpointServiceClient.getEndpoint(name);
 }
 

Note: close() needs to be called on the EndpointServiceClient object to clean up resources such as threads. In the example above, try-with-resources is used, which automatically calls close().

The surface of this class includes several types of Java methods for each of the API's methods:

  1. A "flattened" method. With this type of method, the fields of the request type have been converted into function parameters. It may be the case that not all fields are available as parameters, and not every API method will have a flattened method entry point.
  2. A "request object" method. This type of method only takes one parameter, a request object, which must be constructed before the call. Not every API method will have a request object method.
  3. A "callable" method. This type of method takes no parameters and returns an immutable API callable object, which can be used to initiate calls to the service.

See the individual methods for example code.

Many parameters require resource names to be formatted in a particular way. To assist with these names, this class includes a format method for each type of name, and additionally a parse method to extract the individual identifiers contained within names that are returned.

This class can be customized by passing in a custom instance of EndpointServiceSettings to create(). For example:

To customize credentials:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 EndpointServiceSettings endpointServiceSettings =
     EndpointServiceSettings.newBuilder()
         .setCredentialsProvider(FixedCredentialsProvider.create(myCredentials))
         .build();
 EndpointServiceClient endpointServiceClient =
     EndpointServiceClient.create(endpointServiceSettings);
 

To customize the endpoint:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 EndpointServiceSettings endpointServiceSettings =
     EndpointServiceSettings.newBuilder().setEndpoint(myEndpoint).build();
 EndpointServiceClient endpointServiceClient =
     EndpointServiceClient.create(endpointServiceSettings);
 

Please refer to the GitHub repository's samples for more quickstart code snippets.

EndpointServiceClient.ListEndpointsFixedSizeCollection

EndpointServiceClient.ListEndpointsPage

EndpointServiceClient.ListEndpointsPagedResponse

EndpointServiceClient.ListLocationsFixedSizeCollection

EndpointServiceClient.ListLocationsPage

EndpointServiceClient.ListLocationsPagedResponse

EndpointServiceGrpc

A service for managing Vertex AI's Endpoints.

EndpointServiceGrpc.EndpointServiceBlockingStub

A stub to allow clients to do synchronous rpc calls to service EndpointService.

A service for managing Vertex AI's Endpoints.

EndpointServiceGrpc.EndpointServiceFutureStub

A stub to allow clients to do ListenableFuture-style rpc calls to service EndpointService.

A service for managing Vertex AI's Endpoints.

EndpointServiceGrpc.EndpointServiceImplBase

Base class for the server implementation of the service EndpointService.

A service for managing Vertex AI's Endpoints.

EndpointServiceGrpc.EndpointServiceStub

A stub to allow clients to do asynchronous rpc calls to service EndpointService.

A service for managing Vertex AI's Endpoints.

EndpointServiceProto

EndpointServiceSettings

Settings class to configure an instance of EndpointServiceClient.

The default instance has everything set to sensible defaults:

  • The default service address (aiplatform.googleapis.com) and default port (443) are used.
  • Credentials are acquired automatically through Application Default Credentials.
  • Retries are configured for idempotent methods but not for non-idempotent methods.

The builder of this class is recursive, so contained classes are themselves builders. When build() is called, the tree of builders is called to create the complete settings object.

For example, to set the total timeout of getEndpoint to 30 seconds:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 EndpointServiceSettings.Builder endpointServiceSettingsBuilder =
     EndpointServiceSettings.newBuilder();
 endpointServiceSettingsBuilder
     .getEndpointSettings()
     .setRetrySettings(
         endpointServiceSettingsBuilder
             .getEndpointSettings()
             .getRetrySettings()
             .toBuilder()
             .setTotalTimeout(Duration.ofSeconds(30))
             .build());
 EndpointServiceSettings endpointServiceSettings = endpointServiceSettingsBuilder.build();
 

EndpointServiceSettings.Builder

Builder for EndpointServiceSettings.

EntityIdSelector

Selector for entityId. Getting ids from the given source.

Protobuf type google.cloud.aiplatform.v1.EntityIdSelector

EntityIdSelector.Builder

Selector for entityId. Getting ids from the given source.

Protobuf type google.cloud.aiplatform.v1.EntityIdSelector

EntityType

An entity type is a type of object in a system that needs to be modeled and have stored information about. For example, driver is an entity type, and driver0 is an instance of an entity type driver.

Protobuf type google.cloud.aiplatform.v1.EntityType

EntityType.Builder

An entity type is a type of object in a system that needs to be modeled and have stored information about. For example, driver is an entity type, and driver0 is an instance of an entity type driver.

Protobuf type google.cloud.aiplatform.v1.EntityType

EntityTypeName

EntityTypeName.Builder

Builder for projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type}.

EntityTypeProto

EnvVar

Represents an environment variable present in a Container or Python Module.

Protobuf type google.cloud.aiplatform.v1.EnvVar

EnvVar.Builder

Represents an environment variable present in a Container or Python Module.

Protobuf type google.cloud.aiplatform.v1.EnvVar

EnvVarProto

ErrorAnalysisAnnotation

Model error analysis for each annotation.

Protobuf type google.cloud.aiplatform.v1.ErrorAnalysisAnnotation

ErrorAnalysisAnnotation.AttributedItem

Attributed items for a given annotation, typically representing neighbors from the training sets constrained by the query type.

Protobuf type google.cloud.aiplatform.v1.ErrorAnalysisAnnotation.AttributedItem

ErrorAnalysisAnnotation.AttributedItem.Builder

Attributed items for a given annotation, typically representing neighbors from the training sets constrained by the query type.

Protobuf type google.cloud.aiplatform.v1.ErrorAnalysisAnnotation.AttributedItem

ErrorAnalysisAnnotation.Builder

Model error analysis for each annotation.

Protobuf type google.cloud.aiplatform.v1.ErrorAnalysisAnnotation

EvaluatedAnnotation

True positive, false positive, or false negative.

EvaluatedAnnotation is only available under ModelEvaluationSlice with slice of annotationSpec dimension.

Protobuf type google.cloud.aiplatform.v1.EvaluatedAnnotation

EvaluatedAnnotation.Builder

True positive, false positive, or false negative.

EvaluatedAnnotation is only available under ModelEvaluationSlice with slice of annotationSpec dimension.

Protobuf type google.cloud.aiplatform.v1.EvaluatedAnnotation

EvaluatedAnnotationExplanation

Explanation result of the prediction produced by the Model.

Protobuf type google.cloud.aiplatform.v1.EvaluatedAnnotationExplanation

EvaluatedAnnotationExplanation.Builder

Explanation result of the prediction produced by the Model.

Protobuf type google.cloud.aiplatform.v1.EvaluatedAnnotationExplanation

EvaluatedAnnotationProto

Event

An edge describing the relationship between an Artifact and an Execution in a lineage graph.

Protobuf type google.cloud.aiplatform.v1.Event

Event.Builder

An edge describing the relationship between an Artifact and an Execution in a lineage graph.

Protobuf type google.cloud.aiplatform.v1.Event

EventProto

Examples

Example-based explainability that returns the nearest neighbors from the provided dataset.

Protobuf type google.cloud.aiplatform.v1.Examples

Examples.Builder

Example-based explainability that returns the nearest neighbors from the provided dataset.

Protobuf type google.cloud.aiplatform.v1.Examples

Examples.ExampleGcsSource

The Cloud Storage input instances.

Protobuf type google.cloud.aiplatform.v1.Examples.ExampleGcsSource

Examples.ExampleGcsSource.Builder

The Cloud Storage input instances.

Protobuf type google.cloud.aiplatform.v1.Examples.ExampleGcsSource

ExamplesOverride

Overrides for example-based explanations.

Protobuf type google.cloud.aiplatform.v1.ExamplesOverride

ExamplesOverride.Builder

Overrides for example-based explanations.

Protobuf type google.cloud.aiplatform.v1.ExamplesOverride

ExamplesRestrictionsNamespace

Restrictions namespace for example-based explanations overrides.

Protobuf type google.cloud.aiplatform.v1.ExamplesRestrictionsNamespace

ExamplesRestrictionsNamespace.Builder

Restrictions namespace for example-based explanations overrides.

Protobuf type google.cloud.aiplatform.v1.ExamplesRestrictionsNamespace

Execution

Instance of a general execution.

Protobuf type google.cloud.aiplatform.v1.Execution

Execution.Builder

Instance of a general execution.

Protobuf type google.cloud.aiplatform.v1.Execution

ExecutionName

ExecutionName.Builder

Builder for projects/{project}/locations/{location}/metadataStores/{metadata_store}/executions/{execution}.

ExecutionProto

ExplainRequest

Request message for PredictionService.Explain.

Protobuf type google.cloud.aiplatform.v1.ExplainRequest

ExplainRequest.Builder

Request message for PredictionService.Explain.

Protobuf type google.cloud.aiplatform.v1.ExplainRequest

ExplainResponse

Response message for PredictionService.Explain.

Protobuf type google.cloud.aiplatform.v1.ExplainResponse

ExplainResponse.Builder

Response message for PredictionService.Explain.

Protobuf type google.cloud.aiplatform.v1.ExplainResponse

Explanation

Explanation of a prediction (provided in PredictResponse.predictions) produced by the Model on a given instance.

Protobuf type google.cloud.aiplatform.v1.Explanation

Explanation.Builder

Explanation of a prediction (provided in PredictResponse.predictions) produced by the Model on a given instance.

Protobuf type google.cloud.aiplatform.v1.Explanation

ExplanationMetadata

Metadata describing the Model's input and output for explanation.

Protobuf type google.cloud.aiplatform.v1.ExplanationMetadata

ExplanationMetadata.Builder

Metadata describing the Model's input and output for explanation.

Protobuf type google.cloud.aiplatform.v1.ExplanationMetadata

ExplanationMetadata.InputMetadata

Metadata of the input of a feature.

Fields other than InputMetadata.input_baselines are applicable only for Models that are using Vertex AI-provided images for Tensorflow.

Protobuf type google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata

ExplanationMetadata.InputMetadata.Builder

Metadata of the input of a feature.

Fields other than InputMetadata.input_baselines are applicable only for Models that are using Vertex AI-provided images for Tensorflow.

Protobuf type google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata

ExplanationMetadata.InputMetadata.FeatureValueDomain

Domain details of the input feature value. Provides numeric information about the feature, such as its range (min, max). If the feature has been pre-processed, for example with z-scoring, then it provides information about how to recover the original feature. For example, if the input feature is an image and it has been pre-processed to obtain 0-mean and stddev = 1 values, then original_mean, and original_stddev refer to the mean and stddev of the original feature (e.g. image tensor) from which input feature (with mean = 0 and stddev = 1) was obtained.

Protobuf type google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.FeatureValueDomain

ExplanationMetadata.InputMetadata.FeatureValueDomain.Builder

Domain details of the input feature value. Provides numeric information about the feature, such as its range (min, max). If the feature has been pre-processed, for example with z-scoring, then it provides information about how to recover the original feature. For example, if the input feature is an image and it has been pre-processed to obtain 0-mean and stddev = 1 values, then original_mean, and original_stddev refer to the mean and stddev of the original feature (e.g. image tensor) from which input feature (with mean = 0 and stddev = 1) was obtained.

Protobuf type google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.FeatureValueDomain

ExplanationMetadata.InputMetadata.Visualization

Visualization configurations for image explanation.

Protobuf type google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Visualization

ExplanationMetadata.InputMetadata.Visualization.Builder

Visualization configurations for image explanation.

Protobuf type google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Visualization

ExplanationMetadata.OutputMetadata

Metadata of the prediction output to be explained.

Protobuf type google.cloud.aiplatform.v1.ExplanationMetadata.OutputMetadata

ExplanationMetadata.OutputMetadata.Builder

Metadata of the prediction output to be explained.

Protobuf type google.cloud.aiplatform.v1.ExplanationMetadata.OutputMetadata

ExplanationMetadataOverride

The ExplanationMetadata entries that can be overridden at online explanation time.

Protobuf type google.cloud.aiplatform.v1.ExplanationMetadataOverride

ExplanationMetadataOverride.Builder

The ExplanationMetadata entries that can be overridden at online explanation time.

Protobuf type google.cloud.aiplatform.v1.ExplanationMetadataOverride

ExplanationMetadataOverride.InputMetadataOverride

The input metadata entries to be overridden.

Protobuf type google.cloud.aiplatform.v1.ExplanationMetadataOverride.InputMetadataOverride

ExplanationMetadataOverride.InputMetadataOverride.Builder

The input metadata entries to be overridden.

Protobuf type google.cloud.aiplatform.v1.ExplanationMetadataOverride.InputMetadataOverride

ExplanationMetadataProto

ExplanationParameters

Parameters to configure explaining for Model's predictions.

Protobuf type google.cloud.aiplatform.v1.ExplanationParameters

ExplanationParameters.Builder

Parameters to configure explaining for Model's predictions.

Protobuf type google.cloud.aiplatform.v1.ExplanationParameters

ExplanationProto

ExplanationSpec

Specification of Model explanation.

Protobuf type google.cloud.aiplatform.v1.ExplanationSpec

ExplanationSpec.Builder

Specification of Model explanation.

Protobuf type google.cloud.aiplatform.v1.ExplanationSpec

ExplanationSpecOverride

The ExplanationSpec entries that can be overridden at online explanation time.

Protobuf type google.cloud.aiplatform.v1.ExplanationSpecOverride

ExplanationSpecOverride.Builder

The ExplanationSpec entries that can be overridden at online explanation time.

Protobuf type google.cloud.aiplatform.v1.ExplanationSpecOverride

ExportDataConfig

Describes what part of the Dataset is to be exported, the destination of the export and how to export.

Protobuf type google.cloud.aiplatform.v1.ExportDataConfig

ExportDataConfig.Builder

Describes what part of the Dataset is to be exported, the destination of the export and how to export.

Protobuf type google.cloud.aiplatform.v1.ExportDataConfig

ExportDataOperationMetadata

Runtime operation information for DatasetService.ExportData.

Protobuf type google.cloud.aiplatform.v1.ExportDataOperationMetadata

ExportDataOperationMetadata.Builder

Runtime operation information for DatasetService.ExportData.

Protobuf type google.cloud.aiplatform.v1.ExportDataOperationMetadata

ExportDataRequest

Request message for DatasetService.ExportData.

Protobuf type google.cloud.aiplatform.v1.ExportDataRequest

ExportDataRequest.Builder

Request message for DatasetService.ExportData.

Protobuf type google.cloud.aiplatform.v1.ExportDataRequest

ExportDataResponse

Response message for DatasetService.ExportData.

Protobuf type google.cloud.aiplatform.v1.ExportDataResponse

ExportDataResponse.Builder

Response message for DatasetService.ExportData.

Protobuf type google.cloud.aiplatform.v1.ExportDataResponse

ExportFeatureValuesOperationMetadata

Details of operations that exports Features values.

Protobuf type google.cloud.aiplatform.v1.ExportFeatureValuesOperationMetadata

ExportFeatureValuesOperationMetadata.Builder

Details of operations that exports Features values.

Protobuf type google.cloud.aiplatform.v1.ExportFeatureValuesOperationMetadata

ExportFeatureValuesRequest

Request message for FeaturestoreService.ExportFeatureValues.

Protobuf type google.cloud.aiplatform.v1.ExportFeatureValuesRequest

ExportFeatureValuesRequest.Builder

Request message for FeaturestoreService.ExportFeatureValues.

Protobuf type google.cloud.aiplatform.v1.ExportFeatureValuesRequest

ExportFeatureValuesRequest.FullExport

Describes exporting all historical Feature values of all entities of the EntityType between [start_time, end_time].

Protobuf type google.cloud.aiplatform.v1.ExportFeatureValuesRequest.FullExport

ExportFeatureValuesRequest.FullExport.Builder

Describes exporting all historical Feature values of all entities of the EntityType between [start_time, end_time].

Protobuf type google.cloud.aiplatform.v1.ExportFeatureValuesRequest.FullExport

ExportFeatureValuesRequest.SnapshotExport

Describes exporting the latest Feature values of all entities of the EntityType between [start_time, snapshot_time].

Protobuf type google.cloud.aiplatform.v1.ExportFeatureValuesRequest.SnapshotExport

ExportFeatureValuesRequest.SnapshotExport.Builder

Describes exporting the latest Feature values of all entities of the EntityType between [start_time, snapshot_time].

Protobuf type google.cloud.aiplatform.v1.ExportFeatureValuesRequest.SnapshotExport

ExportFeatureValuesResponse

Response message for FeaturestoreService.ExportFeatureValues.

Protobuf type google.cloud.aiplatform.v1.ExportFeatureValuesResponse

ExportFeatureValuesResponse.Builder

Response message for FeaturestoreService.ExportFeatureValues.

Protobuf type google.cloud.aiplatform.v1.ExportFeatureValuesResponse

ExportFractionSplit

Assigns the input data to training, validation, and test sets as per the given fractions. Any of training_fraction, validation_fraction and test_fraction may optionally be provided, they must sum to up to 1. If the provided ones sum to less than 1, the remainder is assigned to sets as decided by Vertex AI. If none of the fractions are set, by default roughly 80% of data is used for training, 10% for validation, and 10% for test.

Protobuf type google.cloud.aiplatform.v1.ExportFractionSplit

ExportFractionSplit.Builder

Assigns the input data to training, validation, and test sets as per the given fractions. Any of training_fraction, validation_fraction and test_fraction may optionally be provided, they must sum to up to 1. If the provided ones sum to less than 1, the remainder is assigned to sets as decided by Vertex AI. If none of the fractions are set, by default roughly 80% of data is used for training, 10% for validation, and 10% for test.

Protobuf type google.cloud.aiplatform.v1.ExportFractionSplit

ExportModelOperationMetadata

Details of ModelService.ExportModel operation.

Protobuf type google.cloud.aiplatform.v1.ExportModelOperationMetadata

ExportModelOperationMetadata.Builder

Details of ModelService.ExportModel operation.

Protobuf type google.cloud.aiplatform.v1.ExportModelOperationMetadata

ExportModelOperationMetadata.OutputInfo

Further describes the output of the ExportModel. Supplements ExportModelRequest.OutputConfig.

Protobuf type google.cloud.aiplatform.v1.ExportModelOperationMetadata.OutputInfo

ExportModelOperationMetadata.OutputInfo.Builder

Further describes the output of the ExportModel. Supplements ExportModelRequest.OutputConfig.

Protobuf type google.cloud.aiplatform.v1.ExportModelOperationMetadata.OutputInfo

ExportModelRequest

Request message for ModelService.ExportModel.

Protobuf type google.cloud.aiplatform.v1.ExportModelRequest

ExportModelRequest.Builder

Request message for ModelService.ExportModel.

Protobuf type google.cloud.aiplatform.v1.ExportModelRequest

ExportModelRequest.OutputConfig

Output configuration for the Model export.

Protobuf type google.cloud.aiplatform.v1.ExportModelRequest.OutputConfig

ExportModelRequest.OutputConfig.Builder

Output configuration for the Model export.

Protobuf type google.cloud.aiplatform.v1.ExportModelRequest.OutputConfig

ExportModelResponse

Response message of ModelService.ExportModel operation.

Protobuf type google.cloud.aiplatform.v1.ExportModelResponse

ExportModelResponse.Builder

Response message of ModelService.ExportModel operation.

Protobuf type google.cloud.aiplatform.v1.ExportModelResponse

ExportTensorboardTimeSeriesDataRequest

Request message for TensorboardService.ExportTensorboardTimeSeriesData.

Protobuf type google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest

ExportTensorboardTimeSeriesDataRequest.Builder

Request message for TensorboardService.ExportTensorboardTimeSeriesData.

Protobuf type google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest

ExportTensorboardTimeSeriesDataResponse

Response message for TensorboardService.ExportTensorboardTimeSeriesData.

Protobuf type google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse

ExportTensorboardTimeSeriesDataResponse.Builder

Response message for TensorboardService.ExportTensorboardTimeSeriesData.

Protobuf type google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse

Feature

Feature Metadata information that describes an attribute of an entity type. For example, apple is an entity type, and color is a feature that describes apple.

Protobuf type google.cloud.aiplatform.v1.Feature

Feature.Builder

Feature Metadata information that describes an attribute of an entity type. For example, apple is an entity type, and color is a feature that describes apple.

Protobuf type google.cloud.aiplatform.v1.Feature

Feature.MonitoringStatsAnomaly

A list of historical SnapshotAnalysis or ImportFeaturesAnalysis stats requested by user, sorted by FeatureStatsAnomaly.start_time descending.

Protobuf type google.cloud.aiplatform.v1.Feature.MonitoringStatsAnomaly

Feature.MonitoringStatsAnomaly.Builder

A list of historical SnapshotAnalysis or ImportFeaturesAnalysis stats requested by user, sorted by FeatureStatsAnomaly.start_time descending.

Protobuf type google.cloud.aiplatform.v1.Feature.MonitoringStatsAnomaly

FeatureMonitoringStatsProto

FeatureName

FeatureName.Builder

Builder for projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type}/features/{feature}.

FeatureNoiseSigma

Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients.

Protobuf type google.cloud.aiplatform.v1.FeatureNoiseSigma

FeatureNoiseSigma.Builder

Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients.

Protobuf type google.cloud.aiplatform.v1.FeatureNoiseSigma

FeatureNoiseSigma.NoiseSigmaForFeature

Noise sigma for a single feature.

Protobuf type google.cloud.aiplatform.v1.FeatureNoiseSigma.NoiseSigmaForFeature

FeatureNoiseSigma.NoiseSigmaForFeature.Builder

Noise sigma for a single feature.

Protobuf type google.cloud.aiplatform.v1.FeatureNoiseSigma.NoiseSigmaForFeature

FeatureProto

FeatureSelector

Selector for Features of an EntityType.

Protobuf type google.cloud.aiplatform.v1.FeatureSelector

FeatureSelector.Builder

Selector for Features of an EntityType.

Protobuf type google.cloud.aiplatform.v1.FeatureSelector

FeatureSelectorProto

FeatureStatsAnomaly

Stats and Anomaly generated at specific timestamp for specific Feature. The start_time and end_time are used to define the time range of the dataset that current stats belongs to, e.g. prediction traffic is bucketed into prediction datasets by time window. If the Dataset is not defined by time window, start_time = end_time. Timestamp of the stats and anomalies always refers to end_time. Raw stats and anomalies are stored in stats_uri or anomaly_uri in the tensorflow defined protos. Field data_stats contains almost identical information with the raw stats in Vertex AI defined proto, for UI to display.

Protobuf type google.cloud.aiplatform.v1.FeatureStatsAnomaly

FeatureStatsAnomaly.Builder

Stats and Anomaly generated at specific timestamp for specific Feature. The start_time and end_time are used to define the time range of the dataset that current stats belongs to, e.g. prediction traffic is bucketed into prediction datasets by time window. If the Dataset is not defined by time window, start_time = end_time. Timestamp of the stats and anomalies always refers to end_time. Raw stats and anomalies are stored in stats_uri or anomaly_uri in the tensorflow defined protos. Field data_stats contains almost identical information with the raw stats in Vertex AI defined proto, for UI to display.

Protobuf type google.cloud.aiplatform.v1.FeatureStatsAnomaly

FeatureValue

Value for a feature.

Protobuf type google.cloud.aiplatform.v1.FeatureValue

FeatureValue.Builder

Value for a feature.

Protobuf type google.cloud.aiplatform.v1.FeatureValue

FeatureValue.Metadata

Metadata of feature value.

Protobuf type google.cloud.aiplatform.v1.FeatureValue.Metadata

FeatureValue.Metadata.Builder

Metadata of feature value.

Protobuf type google.cloud.aiplatform.v1.FeatureValue.Metadata

FeatureValueDestination

A destination location for Feature values and format.

Protobuf type google.cloud.aiplatform.v1.FeatureValueDestination

FeatureValueDestination.Builder

A destination location for Feature values and format.

Protobuf type google.cloud.aiplatform.v1.FeatureValueDestination

FeatureValueList

Container for list of values.

Protobuf type google.cloud.aiplatform.v1.FeatureValueList

FeatureValueList.Builder

Container for list of values.

Protobuf type google.cloud.aiplatform.v1.FeatureValueList

Featurestore

Vertex AI Feature Store provides a centralized repository for organizing, storing, and serving ML features. The Featurestore is a top-level container for your features and their values.

Protobuf type google.cloud.aiplatform.v1.Featurestore

Featurestore.Builder

Vertex AI Feature Store provides a centralized repository for organizing, storing, and serving ML features. The Featurestore is a top-level container for your features and their values.

Protobuf type google.cloud.aiplatform.v1.Featurestore

Featurestore.OnlineServingConfig

OnlineServingConfig specifies the details for provisioning online serving resources.

Protobuf type google.cloud.aiplatform.v1.Featurestore.OnlineServingConfig

Featurestore.OnlineServingConfig.Builder

OnlineServingConfig specifies the details for provisioning online serving resources.

Protobuf type google.cloud.aiplatform.v1.Featurestore.OnlineServingConfig

Featurestore.OnlineServingConfig.Scaling

Online serving scaling configuration. If min_node_count and max_node_count are set to the same value, the cluster will be configured with the fixed number of node (no auto-scaling).

Protobuf type google.cloud.aiplatform.v1.Featurestore.OnlineServingConfig.Scaling

Featurestore.OnlineServingConfig.Scaling.Builder

Online serving scaling configuration. If min_node_count and max_node_count are set to the same value, the cluster will be configured with the fixed number of node (no auto-scaling).

Protobuf type google.cloud.aiplatform.v1.Featurestore.OnlineServingConfig.Scaling

FeaturestoreMonitoringConfig

Configuration of how features in Featurestore are monitored.

Protobuf type google.cloud.aiplatform.v1.FeaturestoreMonitoringConfig

FeaturestoreMonitoringConfig.Builder

Configuration of how features in Featurestore are monitored.

Protobuf type google.cloud.aiplatform.v1.FeaturestoreMonitoringConfig

FeaturestoreMonitoringConfig.ImportFeaturesAnalysis

Configuration of the Featurestore's ImportFeature Analysis Based Monitoring. This type of analysis generates statistics for values of each Feature imported by every ImportFeatureValues operation.

Protobuf type google.cloud.aiplatform.v1.FeaturestoreMonitoringConfig.ImportFeaturesAnalysis

FeaturestoreMonitoringConfig.ImportFeaturesAnalysis.Builder

Configuration of the Featurestore's ImportFeature Analysis Based Monitoring. This type of analysis generates statistics for values of each Feature imported by every ImportFeatureValues operation.

Protobuf type google.cloud.aiplatform.v1.FeaturestoreMonitoringConfig.ImportFeaturesAnalysis

FeaturestoreMonitoringConfig.SnapshotAnalysis

Configuration of the Featurestore's Snapshot Analysis Based Monitoring. This type of analysis generates statistics for each Feature based on a snapshot of the latest feature value of each entities every monitoring_interval.

Protobuf type google.cloud.aiplatform.v1.FeaturestoreMonitoringConfig.SnapshotAnalysis

FeaturestoreMonitoringConfig.SnapshotAnalysis.Builder

Configuration of the Featurestore's Snapshot Analysis Based Monitoring. This type of analysis generates statistics for each Feature based on a snapshot of the latest feature value of each entities every monitoring_interval.

Protobuf type google.cloud.aiplatform.v1.FeaturestoreMonitoringConfig.SnapshotAnalysis

FeaturestoreMonitoringConfig.ThresholdConfig

The config for Featurestore Monitoring threshold.

Protobuf type google.cloud.aiplatform.v1.FeaturestoreMonitoringConfig.ThresholdConfig

FeaturestoreMonitoringConfig.ThresholdConfig.Builder

The config for Featurestore Monitoring threshold.

Protobuf type google.cloud.aiplatform.v1.FeaturestoreMonitoringConfig.ThresholdConfig

FeaturestoreMonitoringProto

FeaturestoreName

FeaturestoreName.Builder

Builder for projects/{project}/locations/{location}/featurestores/{featurestore}.

FeaturestoreOnlineServiceProto

FeaturestoreOnlineServingServiceClient

Service Description: A service for serving online feature values.

This class provides the ability to make remote calls to the backing service through method calls that map to API methods. Sample code to get started:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (FeaturestoreOnlineServingServiceClient featurestoreOnlineServingServiceClient =
     FeaturestoreOnlineServingServiceClient.create()) {
   EntityTypeName entityType =
       EntityTypeName.of("[PROJECT]", "[LOCATION]", "[FEATURESTORE]", "[ENTITY_TYPE]");
   ReadFeatureValuesResponse response =
       featurestoreOnlineServingServiceClient.readFeatureValues(entityType);
 }
 

Note: close() needs to be called on the FeaturestoreOnlineServingServiceClient object to clean up resources such as threads. In the example above, try-with-resources is used, which automatically calls close().

The surface of this class includes several types of Java methods for each of the API's methods:

  1. A "flattened" method. With this type of method, the fields of the request type have been converted into function parameters. It may be the case that not all fields are available as parameters, and not every API method will have a flattened method entry point.
  2. A "request object" method. This type of method only takes one parameter, a request object, which must be constructed before the call. Not every API method will have a request object method.
  3. A "callable" method. This type of method takes no parameters and returns an immutable API callable object, which can be used to initiate calls to the service.

See the individual methods for example code.

Many parameters require resource names to be formatted in a particular way. To assist with these names, this class includes a format method for each type of name, and additionally a parse method to extract the individual identifiers contained within names that are returned.

This class can be customized by passing in a custom instance of FeaturestoreOnlineServingServiceSettings to create(). For example:

To customize credentials:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 FeaturestoreOnlineServingServiceSettings featurestoreOnlineServingServiceSettings =
     FeaturestoreOnlineServingServiceSettings.newBuilder()
         .setCredentialsProvider(FixedCredentialsProvider.create(myCredentials))
         .build();
 FeaturestoreOnlineServingServiceClient featurestoreOnlineServingServiceClient =
     FeaturestoreOnlineServingServiceClient.create(featurestoreOnlineServingServiceSettings);
 

To customize the endpoint:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 FeaturestoreOnlineServingServiceSettings featurestoreOnlineServingServiceSettings =
     FeaturestoreOnlineServingServiceSettings.newBuilder().setEndpoint(myEndpoint).build();
 FeaturestoreOnlineServingServiceClient featurestoreOnlineServingServiceClient =
     FeaturestoreOnlineServingServiceClient.create(featurestoreOnlineServingServiceSettings);
 

Please refer to the GitHub repository's samples for more quickstart code snippets.

FeaturestoreOnlineServingServiceClient.ListLocationsFixedSizeCollection

FeaturestoreOnlineServingServiceClient.ListLocationsPage

FeaturestoreOnlineServingServiceClient.ListLocationsPagedResponse

FeaturestoreOnlineServingServiceGrpc

A service for serving online feature values.

FeaturestoreOnlineServingServiceGrpc.FeaturestoreOnlineServingServiceBlockingStub

A stub to allow clients to do synchronous rpc calls to service FeaturestoreOnlineServingService.

A service for serving online feature values.

FeaturestoreOnlineServingServiceGrpc.FeaturestoreOnlineServingServiceFutureStub

A stub to allow clients to do ListenableFuture-style rpc calls to service FeaturestoreOnlineServingService.

A service for serving online feature values.

FeaturestoreOnlineServingServiceGrpc.FeaturestoreOnlineServingServiceImplBase

Base class for the server implementation of the service FeaturestoreOnlineServingService.

A service for serving online feature values.

FeaturestoreOnlineServingServiceGrpc.FeaturestoreOnlineServingServiceStub

A stub to allow clients to do asynchronous rpc calls to service FeaturestoreOnlineServingService.

A service for serving online feature values.

FeaturestoreOnlineServingServiceSettings

Settings class to configure an instance of FeaturestoreOnlineServingServiceClient.

The default instance has everything set to sensible defaults:

  • The default service address (aiplatform.googleapis.com) and default port (443) are used.
  • Credentials are acquired automatically through Application Default Credentials.
  • Retries are configured for idempotent methods but not for non-idempotent methods.

The builder of this class is recursive, so contained classes are themselves builders. When build() is called, the tree of builders is called to create the complete settings object.

For example, to set the total timeout of readFeatureValues to 30 seconds:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 FeaturestoreOnlineServingServiceSettings.Builder
     featurestoreOnlineServingServiceSettingsBuilder =
         FeaturestoreOnlineServingServiceSettings.newBuilder();
 featurestoreOnlineServingServiceSettingsBuilder
     .readFeatureValuesSettings()
     .setRetrySettings(
         featurestoreOnlineServingServiceSettingsBuilder
             .readFeatureValuesSettings()
             .getRetrySettings()
             .toBuilder()
             .setTotalTimeout(Duration.ofSeconds(30))
             .build());
 FeaturestoreOnlineServingServiceSettings featurestoreOnlineServingServiceSettings =
     featurestoreOnlineServingServiceSettingsBuilder.build();
 

FeaturestoreOnlineServingServiceSettings.Builder

Builder for FeaturestoreOnlineServingServiceSettings.

FeaturestoreProto

FeaturestoreServiceClient

Service Description: The service that handles CRUD and List for resources for Featurestore.

This class provides the ability to make remote calls to the backing service through method calls that map to API methods. Sample code to get started:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (FeaturestoreServiceClient featurestoreServiceClient = FeaturestoreServiceClient.create()) {
   FeaturestoreName name = FeaturestoreName.of("[PROJECT]", "[LOCATION]", "[FEATURESTORE]");
   Featurestore response = featurestoreServiceClient.getFeaturestore(name);
 }
 

Note: close() needs to be called on the FeaturestoreServiceClient object to clean up resources such as threads. In the example above, try-with-resources is used, which automatically calls close().

The surface of this class includes several types of Java methods for each of the API's methods:

  1. A "flattened" method. With this type of method, the fields of the request type have been converted into function parameters. It may be the case that not all fields are available as parameters, and not every API method will have a flattened method entry point.
  2. A "request object" method. This type of method only takes one parameter, a request object, which must be constructed before the call. Not every API method will have a request object method.
  3. A "callable" method. This type of method takes no parameters and returns an immutable API callable object, which can be used to initiate calls to the service.

See the individual methods for example code.

Many parameters require resource names to be formatted in a particular way. To assist with these names, this class includes a format method for each type of name, and additionally a parse method to extract the individual identifiers contained within names that are returned.

This class can be customized by passing in a custom instance of FeaturestoreServiceSettings to create(). For example:

To customize credentials:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 FeaturestoreServiceSettings featurestoreServiceSettings =
     FeaturestoreServiceSettings.newBuilder()
         .setCredentialsProvider(FixedCredentialsProvider.create(myCredentials))
         .build();
 FeaturestoreServiceClient featurestoreServiceClient =
     FeaturestoreServiceClient.create(featurestoreServiceSettings);
 

To customize the endpoint:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 FeaturestoreServiceSettings featurestoreServiceSettings =
     FeaturestoreServiceSettings.newBuilder().setEndpoint(myEndpoint).build();
 FeaturestoreServiceClient featurestoreServiceClient =
     FeaturestoreServiceClient.create(featurestoreServiceSettings);
 

Please refer to the GitHub repository's samples for more quickstart code snippets.

FeaturestoreServiceClient.ListEntityTypesFixedSizeCollection

FeaturestoreServiceClient.ListEntityTypesPage

FeaturestoreServiceClient.ListEntityTypesPagedResponse

FeaturestoreServiceClient.ListFeaturesFixedSizeCollection

FeaturestoreServiceClient.ListFeaturesPage

FeaturestoreServiceClient.ListFeaturesPagedResponse

FeaturestoreServiceClient.ListFeaturestoresFixedSizeCollection

FeaturestoreServiceClient.ListFeaturestoresPage

FeaturestoreServiceClient.ListFeaturestoresPagedResponse

FeaturestoreServiceClient.ListLocationsFixedSizeCollection

FeaturestoreServiceClient.ListLocationsPage

FeaturestoreServiceClient.ListLocationsPagedResponse

FeaturestoreServiceClient.SearchFeaturesFixedSizeCollection

FeaturestoreServiceClient.SearchFeaturesPage

FeaturestoreServiceClient.SearchFeaturesPagedResponse

FeaturestoreServiceGrpc

The service that handles CRUD and List for resources for Featurestore.

FeaturestoreServiceGrpc.FeaturestoreServiceBlockingStub

A stub to allow clients to do synchronous rpc calls to service FeaturestoreService.

The service that handles CRUD and List for resources for Featurestore.

FeaturestoreServiceGrpc.FeaturestoreServiceFutureStub

A stub to allow clients to do ListenableFuture-style rpc calls to service FeaturestoreService.

The service that handles CRUD and List for resources for Featurestore.

FeaturestoreServiceGrpc.FeaturestoreServiceImplBase

Base class for the server implementation of the service FeaturestoreService.

The service that handles CRUD and List for resources for Featurestore.

FeaturestoreServiceGrpc.FeaturestoreServiceStub

A stub to allow clients to do asynchronous rpc calls to service FeaturestoreService.

The service that handles CRUD and List for resources for Featurestore.

FeaturestoreServiceProto

FeaturestoreServiceSettings

Settings class to configure an instance of FeaturestoreServiceClient.

The default instance has everything set to sensible defaults:

  • The default service address (aiplatform.googleapis.com) and default port (443) are used.
  • Credentials are acquired automatically through Application Default Credentials.
  • Retries are configured for idempotent methods but not for non-idempotent methods.

The builder of this class is recursive, so contained classes are themselves builders. When build() is called, the tree of builders is called to create the complete settings object.

For example, to set the total timeout of getFeaturestore to 30 seconds:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 FeaturestoreServiceSettings.Builder featurestoreServiceSettingsBuilder =
     FeaturestoreServiceSettings.newBuilder();
 featurestoreServiceSettingsBuilder
     .getFeaturestoreSettings()
     .setRetrySettings(
         featurestoreServiceSettingsBuilder
             .getFeaturestoreSettings()
             .getRetrySettings()
             .toBuilder()
             .setTotalTimeout(Duration.ofSeconds(30))
             .build());
 FeaturestoreServiceSettings featurestoreServiceSettings =
     featurestoreServiceSettingsBuilder.build();
 

FeaturestoreServiceSettings.Builder

Builder for FeaturestoreServiceSettings.

FilterSplit

Assigns input data to training, validation, and test sets based on the given filters, data pieces not matched by any filter are ignored. Currently only supported for Datasets containing DataItems. If any of the filters in this message are to match nothing, then they can be set as '-' (the minus sign).

Supported only for unstructured Datasets.

Protobuf type google.cloud.aiplatform.v1.FilterSplit

FilterSplit.Builder

Assigns input data to training, validation, and test sets based on the given filters, data pieces not matched by any filter are ignored. Currently only supported for Datasets containing DataItems. If any of the filters in this message are to match nothing, then they can be set as '-' (the minus sign).

Supported only for unstructured Datasets.

Protobuf type google.cloud.aiplatform.v1.FilterSplit

FindNeighborsRequest

The request message for MatchService.FindNeighbors.

Protobuf type google.cloud.aiplatform.v1.FindNeighborsRequest

FindNeighborsRequest.Builder

The request message for MatchService.FindNeighbors.

Protobuf type google.cloud.aiplatform.v1.FindNeighborsRequest

FindNeighborsRequest.Query

A query to find a number of the nearest neighbors (most similar vectors) of a vector.

Protobuf type google.cloud.aiplatform.v1.FindNeighborsRequest.Query

FindNeighborsRequest.Query.Builder

A query to find a number of the nearest neighbors (most similar vectors) of a vector.

Protobuf type google.cloud.aiplatform.v1.FindNeighborsRequest.Query

FindNeighborsResponse

The response message for MatchService.FindNeighbors.

Protobuf type google.cloud.aiplatform.v1.FindNeighborsResponse

FindNeighborsResponse.Builder

The response message for MatchService.FindNeighbors.

Protobuf type google.cloud.aiplatform.v1.FindNeighborsResponse

FindNeighborsResponse.NearestNeighbors

Nearest neighbors for one query.

Protobuf type google.cloud.aiplatform.v1.FindNeighborsResponse.NearestNeighbors

FindNeighborsResponse.NearestNeighbors.Builder

Nearest neighbors for one query.

Protobuf type google.cloud.aiplatform.v1.FindNeighborsResponse.NearestNeighbors

FindNeighborsResponse.Neighbor

A neighbor of the query vector.

Protobuf type google.cloud.aiplatform.v1.FindNeighborsResponse.Neighbor

FindNeighborsResponse.Neighbor.Builder

A neighbor of the query vector.

Protobuf type google.cloud.aiplatform.v1.FindNeighborsResponse.Neighbor

FractionSplit

Assigns the input data to training, validation, and test sets as per the given fractions. Any of training_fraction, validation_fraction and test_fraction may optionally be provided, they must sum to up to 1. If the provided ones sum to less than 1, the remainder is assigned to sets as decided by Vertex AI. If none of the fractions are set, by default roughly 80% of data is used for training, 10% for validation, and 10% for test.

Protobuf type google.cloud.aiplatform.v1.FractionSplit

FractionSplit.Builder

Assigns the input data to training, validation, and test sets as per the given fractions. Any of training_fraction, validation_fraction and test_fraction may optionally be provided, they must sum to up to 1. If the provided ones sum to less than 1, the remainder is assigned to sets as decided by Vertex AI. If none of the fractions are set, by default roughly 80% of data is used for training, 10% for validation, and 10% for test.

Protobuf type google.cloud.aiplatform.v1.FractionSplit

GcsDestination

The Google Cloud Storage location where the output is to be written to.

Protobuf type google.cloud.aiplatform.v1.GcsDestination

GcsDestination.Builder

The Google Cloud Storage location where the output is to be written to.

Protobuf type google.cloud.aiplatform.v1.GcsDestination

GcsSource

The Google Cloud Storage location for the input content.

Protobuf type google.cloud.aiplatform.v1.GcsSource

GcsSource.Builder

The Google Cloud Storage location for the input content.

Protobuf type google.cloud.aiplatform.v1.GcsSource

GenericOperationMetadata

Generic Metadata shared by all operations.

Protobuf type google.cloud.aiplatform.v1.GenericOperationMetadata

GenericOperationMetadata.Builder

Generic Metadata shared by all operations.

Protobuf type google.cloud.aiplatform.v1.GenericOperationMetadata

GetAnnotationSpecRequest

Request message for DatasetService.GetAnnotationSpec.

Protobuf type google.cloud.aiplatform.v1.GetAnnotationSpecRequest

GetAnnotationSpecRequest.Builder

Request message for DatasetService.GetAnnotationSpec.

Protobuf type google.cloud.aiplatform.v1.GetAnnotationSpecRequest

GetArtifactRequest

Request message for MetadataService.GetArtifact.

Protobuf type google.cloud.aiplatform.v1.GetArtifactRequest

GetArtifactRequest.Builder

Request message for MetadataService.GetArtifact.

Protobuf type google.cloud.aiplatform.v1.GetArtifactRequest

GetBatchPredictionJobRequest

Request message for JobService.GetBatchPredictionJob.

Protobuf type google.cloud.aiplatform.v1.GetBatchPredictionJobRequest

GetBatchPredictionJobRequest.Builder

Request message for JobService.GetBatchPredictionJob.

Protobuf type google.cloud.aiplatform.v1.GetBatchPredictionJobRequest

GetContextRequest

Request message for MetadataService.GetContext.

Protobuf type google.cloud.aiplatform.v1.GetContextRequest

GetContextRequest.Builder

Request message for MetadataService.GetContext.

Protobuf type google.cloud.aiplatform.v1.GetContextRequest

GetCustomJobRequest

Request message for JobService.GetCustomJob.

Protobuf type google.cloud.aiplatform.v1.GetCustomJobRequest

GetCustomJobRequest.Builder

Request message for JobService.GetCustomJob.

Protobuf type google.cloud.aiplatform.v1.GetCustomJobRequest

GetDataLabelingJobRequest

Request message for JobService.GetDataLabelingJob.

Protobuf type google.cloud.aiplatform.v1.GetDataLabelingJobRequest

GetDataLabelingJobRequest.Builder

Request message for JobService.GetDataLabelingJob.

Protobuf type google.cloud.aiplatform.v1.GetDataLabelingJobRequest

GetDatasetRequest

Request message for DatasetService.GetDataset.

Protobuf type google.cloud.aiplatform.v1.GetDatasetRequest

GetDatasetRequest.Builder

Request message for DatasetService.GetDataset.

Protobuf type google.cloud.aiplatform.v1.GetDatasetRequest

GetEndpointRequest

Request message for EndpointService.GetEndpoint

Protobuf type google.cloud.aiplatform.v1.GetEndpointRequest

GetEndpointRequest.Builder

Request message for EndpointService.GetEndpoint

Protobuf type google.cloud.aiplatform.v1.GetEndpointRequest

GetEntityTypeRequest

Request message for FeaturestoreService.GetEntityType.

Protobuf type google.cloud.aiplatform.v1.GetEntityTypeRequest

GetEntityTypeRequest.Builder

Request message for FeaturestoreService.GetEntityType.

Protobuf type google.cloud.aiplatform.v1.GetEntityTypeRequest

GetExecutionRequest

Request message for MetadataService.GetExecution.

Protobuf type google.cloud.aiplatform.v1.GetExecutionRequest

GetExecutionRequest.Builder

Request message for MetadataService.GetExecution.

Protobuf type google.cloud.aiplatform.v1.GetExecutionRequest

GetFeatureRequest

Request message for FeaturestoreService.GetFeature.

Protobuf type google.cloud.aiplatform.v1.GetFeatureRequest

GetFeatureRequest.Builder

Request message for FeaturestoreService.GetFeature.

Protobuf type google.cloud.aiplatform.v1.GetFeatureRequest

GetFeaturestoreRequest

Request message for FeaturestoreService.GetFeaturestore.

Protobuf type google.cloud.aiplatform.v1.GetFeaturestoreRequest

GetFeaturestoreRequest.Builder

Request message for FeaturestoreService.GetFeaturestore.

Protobuf type google.cloud.aiplatform.v1.GetFeaturestoreRequest

GetHyperparameterTuningJobRequest

Request message for JobService.GetHyperparameterTuningJob.

Protobuf type google.cloud.aiplatform.v1.GetHyperparameterTuningJobRequest

GetHyperparameterTuningJobRequest.Builder

Request message for JobService.GetHyperparameterTuningJob.

Protobuf type google.cloud.aiplatform.v1.GetHyperparameterTuningJobRequest

GetIndexEndpointRequest

Request message for IndexEndpointService.GetIndexEndpoint

Protobuf type google.cloud.aiplatform.v1.GetIndexEndpointRequest

GetIndexEndpointRequest.Builder

Request message for IndexEndpointService.GetIndexEndpoint

Protobuf type google.cloud.aiplatform.v1.GetIndexEndpointRequest

GetIndexRequest

Request message for IndexService.GetIndex

Protobuf type google.cloud.aiplatform.v1.GetIndexRequest

GetIndexRequest.Builder

Request message for IndexService.GetIndex

Protobuf type google.cloud.aiplatform.v1.GetIndexRequest

GetMetadataSchemaRequest

Request message for MetadataService.GetMetadataSchema.

Protobuf type google.cloud.aiplatform.v1.GetMetadataSchemaRequest

GetMetadataSchemaRequest.Builder

Request message for MetadataService.GetMetadataSchema.

Protobuf type google.cloud.aiplatform.v1.GetMetadataSchemaRequest

GetMetadataStoreRequest

Request message for MetadataService.GetMetadataStore.

Protobuf type google.cloud.aiplatform.v1.GetMetadataStoreRequest

GetMetadataStoreRequest.Builder

Request message for MetadataService.GetMetadataStore.

Protobuf type google.cloud.aiplatform.v1.GetMetadataStoreRequest

GetModelDeploymentMonitoringJobRequest

Request message for JobService.GetModelDeploymentMonitoringJob.

Protobuf type google.cloud.aiplatform.v1.GetModelDeploymentMonitoringJobRequest

GetModelDeploymentMonitoringJobRequest.Builder

Request message for JobService.GetModelDeploymentMonitoringJob.

Protobuf type google.cloud.aiplatform.v1.GetModelDeploymentMonitoringJobRequest

GetModelEvaluationRequest

Request message for ModelService.GetModelEvaluation.

Protobuf type google.cloud.aiplatform.v1.GetModelEvaluationRequest

GetModelEvaluationRequest.Builder

Request message for ModelService.GetModelEvaluation.

Protobuf type google.cloud.aiplatform.v1.GetModelEvaluationRequest

GetModelEvaluationSliceRequest

Request message for ModelService.GetModelEvaluationSlice.

Protobuf type google.cloud.aiplatform.v1.GetModelEvaluationSliceRequest

GetModelEvaluationSliceRequest.Builder

Request message for ModelService.GetModelEvaluationSlice.

Protobuf type google.cloud.aiplatform.v1.GetModelEvaluationSliceRequest

GetModelRequest

Request message for ModelService.GetModel.

Protobuf type google.cloud.aiplatform.v1.GetModelRequest

GetModelRequest.Builder

Request message for ModelService.GetModel.

Protobuf type google.cloud.aiplatform.v1.GetModelRequest

GetNasJobRequest

Request message for JobService.GetNasJob.

Protobuf type google.cloud.aiplatform.v1.GetNasJobRequest

GetNasJobRequest.Builder

Request message for JobService.GetNasJob.

Protobuf type google.cloud.aiplatform.v1.GetNasJobRequest

GetNasTrialDetailRequest

Request message for JobService.GetNasTrialDetail.

Protobuf type google.cloud.aiplatform.v1.GetNasTrialDetailRequest

GetNasTrialDetailRequest.Builder

Request message for JobService.GetNasTrialDetail.

Protobuf type google.cloud.aiplatform.v1.GetNasTrialDetailRequest

GetPipelineJobRequest

Request message for PipelineService.GetPipelineJob.

Protobuf type google.cloud.aiplatform.v1.GetPipelineJobRequest

GetPipelineJobRequest.Builder

Request message for PipelineService.GetPipelineJob.

Protobuf type google.cloud.aiplatform.v1.GetPipelineJobRequest

GetPublisherModelRequest

Request message for ModelGardenService.GetPublisherModel

Protobuf type google.cloud.aiplatform.v1.GetPublisherModelRequest

GetPublisherModelRequest.Builder

Request message for ModelGardenService.GetPublisherModel

Protobuf type google.cloud.aiplatform.v1.GetPublisherModelRequest

GetScheduleRequest

Request message for ScheduleService.GetSchedule.

Protobuf type google.cloud.aiplatform.v1.GetScheduleRequest

GetScheduleRequest.Builder

Request message for ScheduleService.GetSchedule.

Protobuf type google.cloud.aiplatform.v1.GetScheduleRequest

GetSpecialistPoolRequest

Request message for SpecialistPoolService.GetSpecialistPool.

Protobuf type google.cloud.aiplatform.v1.GetSpecialistPoolRequest

GetSpecialistPoolRequest.Builder

Request message for SpecialistPoolService.GetSpecialistPool.

Protobuf type google.cloud.aiplatform.v1.GetSpecialistPoolRequest

GetStudyRequest

Request message for VizierService.GetStudy.

Protobuf type google.cloud.aiplatform.v1.GetStudyRequest

GetStudyRequest.Builder

Request message for VizierService.GetStudy.

Protobuf type google.cloud.aiplatform.v1.GetStudyRequest

GetTensorboardExperimentRequest

Request message for TensorboardService.GetTensorboardExperiment.

Protobuf type google.cloud.aiplatform.v1.GetTensorboardExperimentRequest

GetTensorboardExperimentRequest.Builder

Request message for TensorboardService.GetTensorboardExperiment.

Protobuf type google.cloud.aiplatform.v1.GetTensorboardExperimentRequest

GetTensorboardRequest

Request message for TensorboardService.GetTensorboard.

Protobuf type google.cloud.aiplatform.v1.GetTensorboardRequest

GetTensorboardRequest.Builder

Request message for TensorboardService.GetTensorboard.

Protobuf type google.cloud.aiplatform.v1.GetTensorboardRequest

GetTensorboardRunRequest

Request message for TensorboardService.GetTensorboardRun.

Protobuf type google.cloud.aiplatform.v1.GetTensorboardRunRequest

GetTensorboardRunRequest.Builder

Request message for TensorboardService.GetTensorboardRun.

Protobuf type google.cloud.aiplatform.v1.GetTensorboardRunRequest

GetTensorboardTimeSeriesRequest

Request message for TensorboardService.GetTensorboardTimeSeries.

Protobuf type google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest

GetTensorboardTimeSeriesRequest.Builder

Request message for TensorboardService.GetTensorboardTimeSeries.

Protobuf type google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest

GetTrainingPipelineRequest

Request message for PipelineService.GetTrainingPipeline.

Protobuf type google.cloud.aiplatform.v1.GetTrainingPipelineRequest

GetTrainingPipelineRequest.Builder

Request message for PipelineService.GetTrainingPipeline.

Protobuf type google.cloud.aiplatform.v1.GetTrainingPipelineRequest

GetTrialRequest

Request message for VizierService.GetTrial.

Protobuf type google.cloud.aiplatform.v1.GetTrialRequest

GetTrialRequest.Builder

Request message for VizierService.GetTrial.

Protobuf type google.cloud.aiplatform.v1.GetTrialRequest

HyperparameterTuningJob

Represents a HyperparameterTuningJob. A HyperparameterTuningJob has a Study specification and multiple CustomJobs with identical CustomJob specification.

Protobuf type google.cloud.aiplatform.v1.HyperparameterTuningJob

HyperparameterTuningJob.Builder

Represents a HyperparameterTuningJob. A HyperparameterTuningJob has a Study specification and multiple CustomJobs with identical CustomJob specification.

Protobuf type google.cloud.aiplatform.v1.HyperparameterTuningJob

HyperparameterTuningJobName

HyperparameterTuningJobName.Builder

Builder for projects/{project}/locations/{location}/hyperparameterTuningJobs/{hyperparameter_tuning_job}.

HyperparameterTuningJobProto

IdMatcher

Matcher for Features of an EntityType by Feature ID.

Protobuf type google.cloud.aiplatform.v1.IdMatcher

IdMatcher.Builder

Matcher for Features of an EntityType by Feature ID.

Protobuf type google.cloud.aiplatform.v1.IdMatcher

ImportDataConfig

Describes the location from where we import data into a Dataset, together with the labels that will be applied to the DataItems and the Annotations.

Protobuf type google.cloud.aiplatform.v1.ImportDataConfig

ImportDataConfig.Builder

Describes the location from where we import data into a Dataset, together with the labels that will be applied to the DataItems and the Annotations.

Protobuf type google.cloud.aiplatform.v1.ImportDataConfig

ImportDataOperationMetadata

Runtime operation information for DatasetService.ImportData.

Protobuf type google.cloud.aiplatform.v1.ImportDataOperationMetadata

ImportDataOperationMetadata.Builder

Runtime operation information for DatasetService.ImportData.

Protobuf type google.cloud.aiplatform.v1.ImportDataOperationMetadata

ImportDataRequest

Request message for DatasetService.ImportData.

Protobuf type google.cloud.aiplatform.v1.ImportDataRequest

ImportDataRequest.Builder

Request message for DatasetService.ImportData.

Protobuf type google.cloud.aiplatform.v1.ImportDataRequest

ImportDataResponse

Response message for DatasetService.ImportData.

Protobuf type google.cloud.aiplatform.v1.ImportDataResponse

ImportDataResponse.Builder

Response message for DatasetService.ImportData.

Protobuf type google.cloud.aiplatform.v1.ImportDataResponse

ImportFeatureValuesOperationMetadata

Details of operations that perform import Feature values.

Protobuf type google.cloud.aiplatform.v1.ImportFeatureValuesOperationMetadata

ImportFeatureValuesOperationMetadata.Builder

Details of operations that perform import Feature values.

Protobuf type google.cloud.aiplatform.v1.ImportFeatureValuesOperationMetadata

ImportFeatureValuesRequest

Request message for FeaturestoreService.ImportFeatureValues.

Protobuf type google.cloud.aiplatform.v1.ImportFeatureValuesRequest

ImportFeatureValuesRequest.Builder

Request message for FeaturestoreService.ImportFeatureValues.

Protobuf type google.cloud.aiplatform.v1.ImportFeatureValuesRequest

ImportFeatureValuesRequest.FeatureSpec

Defines the Feature value(s) to import.

Protobuf type google.cloud.aiplatform.v1.ImportFeatureValuesRequest.FeatureSpec

ImportFeatureValuesRequest.FeatureSpec.Builder

Defines the Feature value(s) to import.

Protobuf type google.cloud.aiplatform.v1.ImportFeatureValuesRequest.FeatureSpec

ImportFeatureValuesResponse

Response message for FeaturestoreService.ImportFeatureValues.

Protobuf type google.cloud.aiplatform.v1.ImportFeatureValuesResponse

ImportFeatureValuesResponse.Builder

Response message for FeaturestoreService.ImportFeatureValues.

Protobuf type google.cloud.aiplatform.v1.ImportFeatureValuesResponse

ImportModelEvaluationRequest

Request message for ModelService.ImportModelEvaluation

Protobuf type google.cloud.aiplatform.v1.ImportModelEvaluationRequest

ImportModelEvaluationRequest.Builder

Request message for ModelService.ImportModelEvaluation

Protobuf type google.cloud.aiplatform.v1.ImportModelEvaluationRequest

Index

A representation of a collection of database items organized in a way that allows for approximate nearest neighbor (a.k.a ANN) algorithms search.

Protobuf type google.cloud.aiplatform.v1.Index

Index.Builder

A representation of a collection of database items organized in a way that allows for approximate nearest neighbor (a.k.a ANN) algorithms search.

Protobuf type google.cloud.aiplatform.v1.Index

IndexDatapoint

A datapoint of Index.

Protobuf type google.cloud.aiplatform.v1.IndexDatapoint

IndexDatapoint.Builder

A datapoint of Index.

Protobuf type google.cloud.aiplatform.v1.IndexDatapoint

IndexDatapoint.CrowdingTag

Crowding tag is a constraint on a neighbor list produced by nearest neighbor search requiring that no more than some value k' of the k neighbors returned have the same value of crowding_attribute.

Protobuf type google.cloud.aiplatform.v1.IndexDatapoint.CrowdingTag

IndexDatapoint.CrowdingTag.Builder

Crowding tag is a constraint on a neighbor list produced by nearest neighbor search requiring that no more than some value k' of the k neighbors returned have the same value of crowding_attribute.

Protobuf type google.cloud.aiplatform.v1.IndexDatapoint.CrowdingTag

IndexDatapoint.Restriction

Restriction of a datapoint which describe its attributes(tokens) from each of several attribute categories(namespaces).

Protobuf type google.cloud.aiplatform.v1.IndexDatapoint.Restriction

IndexDatapoint.Restriction.Builder

Restriction of a datapoint which describe its attributes(tokens) from each of several attribute categories(namespaces).

Protobuf type google.cloud.aiplatform.v1.IndexDatapoint.Restriction

IndexEndpoint

Indexes are deployed into it. An IndexEndpoint can have multiple DeployedIndexes.

Protobuf type google.cloud.aiplatform.v1.IndexEndpoint

IndexEndpoint.Builder

Indexes are deployed into it. An IndexEndpoint can have multiple DeployedIndexes.

Protobuf type google.cloud.aiplatform.v1.IndexEndpoint

IndexEndpointName

IndexEndpointName.Builder

Builder for projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}.

IndexEndpointProto

IndexEndpointServiceClient

Service Description: A service for managing Vertex AI's IndexEndpoints.

This class provides the ability to make remote calls to the backing service through method calls that map to API methods. Sample code to get started:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (IndexEndpointServiceClient indexEndpointServiceClient =
     IndexEndpointServiceClient.create()) {
   IndexEndpointName name = IndexEndpointName.of("[PROJECT]", "[LOCATION]", "[INDEX_ENDPOINT]");
   IndexEndpoint response = indexEndpointServiceClient.getIndexEndpoint(name);
 }
 

Note: close() needs to be called on the IndexEndpointServiceClient object to clean up resources such as threads. In the example above, try-with-resources is used, which automatically calls close().

The surface of this class includes several types of Java methods for each of the API's methods:

  1. A "flattened" method. With this type of method, the fields of the request type have been converted into function parameters. It may be the case that not all fields are available as parameters, and not every API method will have a flattened method entry point.
  2. A "request object" method. This type of method only takes one parameter, a request object, which must be constructed before the call. Not every API method will have a request object method.
  3. A "callable" method. This type of method takes no parameters and returns an immutable API callable object, which can be used to initiate calls to the service.

See the individual methods for example code.

Many parameters require resource names to be formatted in a particular way. To assist with these names, this class includes a format method for each type of name, and additionally a parse method to extract the individual identifiers contained within names that are returned.

This class can be customized by passing in a custom instance of IndexEndpointServiceSettings to create(). For example:

To customize credentials:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 IndexEndpointServiceSettings indexEndpointServiceSettings =
     IndexEndpointServiceSettings.newBuilder()
         .setCredentialsProvider(FixedCredentialsProvider.create(myCredentials))
         .build();
 IndexEndpointServiceClient indexEndpointServiceClient =
     IndexEndpointServiceClient.create(indexEndpointServiceSettings);
 

To customize the endpoint:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 IndexEndpointServiceSettings indexEndpointServiceSettings =
     IndexEndpointServiceSettings.newBuilder().setEndpoint(myEndpoint).build();
 IndexEndpointServiceClient indexEndpointServiceClient =
     IndexEndpointServiceClient.create(indexEndpointServiceSettings);
 

Please refer to the GitHub repository's samples for more quickstart code snippets.

IndexEndpointServiceClient.ListIndexEndpointsFixedSizeCollection

IndexEndpointServiceClient.ListIndexEndpointsPage

IndexEndpointServiceClient.ListIndexEndpointsPagedResponse

IndexEndpointServiceClient.ListLocationsFixedSizeCollection

IndexEndpointServiceClient.ListLocationsPage

IndexEndpointServiceClient.ListLocationsPagedResponse

IndexEndpointServiceGrpc

A service for managing Vertex AI's IndexEndpoints.

IndexEndpointServiceGrpc.IndexEndpointServiceBlockingStub

A stub to allow clients to do synchronous rpc calls to service IndexEndpointService.

A service for managing Vertex AI's IndexEndpoints.

IndexEndpointServiceGrpc.IndexEndpointServiceFutureStub

A stub to allow clients to do ListenableFuture-style rpc calls to service IndexEndpointService.

A service for managing Vertex AI's IndexEndpoints.

IndexEndpointServiceGrpc.IndexEndpointServiceImplBase

Base class for the server implementation of the service IndexEndpointService.

A service for managing Vertex AI's IndexEndpoints.

IndexEndpointServiceGrpc.IndexEndpointServiceStub

A stub to allow clients to do asynchronous rpc calls to service IndexEndpointService.

A service for managing Vertex AI's IndexEndpoints.

IndexEndpointServiceProto

IndexEndpointServiceSettings

Settings class to configure an instance of IndexEndpointServiceClient.

The default instance has everything set to sensible defaults:

  • The default service address (aiplatform.googleapis.com) and default port (443) are used.
  • Credentials are acquired automatically through Application Default Credentials.
  • Retries are configured for idempotent methods but not for non-idempotent methods.

The builder of this class is recursive, so contained classes are themselves builders. When build() is called, the tree of builders is called to create the complete settings object.

For example, to set the total timeout of getIndexEndpoint to 30 seconds:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 IndexEndpointServiceSettings.Builder indexEndpointServiceSettingsBuilder =
     IndexEndpointServiceSettings.newBuilder();
 indexEndpointServiceSettingsBuilder
     .getIndexEndpointSettings()
     .setRetrySettings(
         indexEndpointServiceSettingsBuilder
             .getIndexEndpointSettings()
             .getRetrySettings()
             .toBuilder()
             .setTotalTimeout(Duration.ofSeconds(30))
             .build());
 IndexEndpointServiceSettings indexEndpointServiceSettings =
     indexEndpointServiceSettingsBuilder.build();
 

IndexEndpointServiceSettings.Builder

Builder for IndexEndpointServiceSettings.

IndexName

IndexName.Builder

Builder for projects/{project}/locations/{location}/indexes/{index}.

IndexPrivateEndpoints

IndexPrivateEndpoints proto is used to provide paths for users to send requests via private endpoints (e.g. private service access, private service connect). To send request via private service access, use match_grpc_address. To send request via private service connect, use service_attachment.

Protobuf type google.cloud.aiplatform.v1.IndexPrivateEndpoints

IndexPrivateEndpoints.Builder

IndexPrivateEndpoints proto is used to provide paths for users to send requests via private endpoints (e.g. private service access, private service connect). To send request via private service access, use match_grpc_address. To send request via private service connect, use service_attachment.

Protobuf type google.cloud.aiplatform.v1.IndexPrivateEndpoints

IndexProto

IndexServiceClient

Service Description: A service for creating and managing Vertex AI's Index resources.

This class provides the ability to make remote calls to the backing service through method calls that map to API methods. Sample code to get started:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (IndexServiceClient indexServiceClient = IndexServiceClient.create()) {
   IndexName name = IndexName.of("[PROJECT]", "[LOCATION]", "[INDEX]");
   Index response = indexServiceClient.getIndex(name);
 }
 

Note: close() needs to be called on the IndexServiceClient object to clean up resources such as threads. In the example above, try-with-resources is used, which automatically calls close().

The surface of this class includes several types of Java methods for each of the API's methods:

  1. A "flattened" method. With this type of method, the fields of the request type have been converted into function parameters. It may be the case that not all fields are available as parameters, and not every API method will have a flattened method entry point.
  2. A "request object" method. This type of method only takes one parameter, a request object, which must be constructed before the call. Not every API method will have a request object method.
  3. A "callable" method. This type of method takes no parameters and returns an immutable API callable object, which can be used to initiate calls to the service.

See the individual methods for example code.

Many parameters require resource names to be formatted in a particular way. To assist with these names, this class includes a format method for each type of name, and additionally a parse method to extract the individual identifiers contained within names that are returned.

This class can be customized by passing in a custom instance of IndexServiceSettings to create(). For example:

To customize credentials:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 IndexServiceSettings indexServiceSettings =
     IndexServiceSettings.newBuilder()
         .setCredentialsProvider(FixedCredentialsProvider.create(myCredentials))
         .build();
 IndexServiceClient indexServiceClient = IndexServiceClient.create(indexServiceSettings);
 

To customize the endpoint:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 IndexServiceSettings indexServiceSettings =
     IndexServiceSettings.newBuilder().setEndpoint(myEndpoint).build();
 IndexServiceClient indexServiceClient = IndexServiceClient.create(indexServiceSettings);
 

Please refer to the GitHub repository's samples for more quickstart code snippets.

IndexServiceClient.ListIndexesFixedSizeCollection

IndexServiceClient.ListIndexesPage

IndexServiceClient.ListIndexesPagedResponse

IndexServiceClient.ListLocationsFixedSizeCollection

IndexServiceClient.ListLocationsPage

IndexServiceClient.ListLocationsPagedResponse

IndexServiceGrpc

A service for creating and managing Vertex AI's Index resources.

IndexServiceGrpc.IndexServiceBlockingStub

A stub to allow clients to do synchronous rpc calls to service IndexService.

A service for creating and managing Vertex AI's Index resources.

IndexServiceGrpc.IndexServiceFutureStub

A stub to allow clients to do ListenableFuture-style rpc calls to service IndexService.

A service for creating and managing Vertex AI's Index resources.

IndexServiceGrpc.IndexServiceImplBase

Base class for the server implementation of the service IndexService.

A service for creating and managing Vertex AI's Index resources.

IndexServiceGrpc.IndexServiceStub

A stub to allow clients to do asynchronous rpc calls to service IndexService.

A service for creating and managing Vertex AI's Index resources.

IndexServiceProto

IndexServiceSettings

Settings class to configure an instance of IndexServiceClient.

The default instance has everything set to sensible defaults:

  • The default service address (aiplatform.googleapis.com) and default port (443) are used.
  • Credentials are acquired automatically through Application Default Credentials.
  • Retries are configured for idempotent methods but not for non-idempotent methods.

The builder of this class is recursive, so contained classes are themselves builders. When build() is called, the tree of builders is called to create the complete settings object.

For example, to set the total timeout of getIndex to 30 seconds:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 IndexServiceSettings.Builder indexServiceSettingsBuilder = IndexServiceSettings.newBuilder();
 indexServiceSettingsBuilder
     .getIndexSettings()
     .setRetrySettings(
         indexServiceSettingsBuilder
             .getIndexSettings()
             .getRetrySettings()
             .toBuilder()
             .setTotalTimeout(Duration.ofSeconds(30))
             .build());
 IndexServiceSettings indexServiceSettings = indexServiceSettingsBuilder.build();
 

IndexServiceSettings.Builder

Builder for IndexServiceSettings.

IndexStats

Stats of the Index.

Protobuf type google.cloud.aiplatform.v1.IndexStats

IndexStats.Builder

Stats of the Index.

Protobuf type google.cloud.aiplatform.v1.IndexStats

InputDataConfig

Specifies Vertex AI owned input data to be used for training, and possibly evaluating, the Model.

Protobuf type google.cloud.aiplatform.v1.InputDataConfig

InputDataConfig.Builder

Specifies Vertex AI owned input data to be used for training, and possibly evaluating, the Model.

Protobuf type google.cloud.aiplatform.v1.InputDataConfig

Int64Array

A list of int64 values.

Protobuf type google.cloud.aiplatform.v1.Int64Array

Int64Array.Builder

A list of int64 values.

Protobuf type google.cloud.aiplatform.v1.Int64Array

IntegratedGradientsAttribution

An attribution method that computes the Aumann-Shapley value taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365

Protobuf type google.cloud.aiplatform.v1.IntegratedGradientsAttribution

IntegratedGradientsAttribution.Builder

An attribution method that computes the Aumann-Shapley value taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365

Protobuf type google.cloud.aiplatform.v1.IntegratedGradientsAttribution

IoProto

JobServiceClient

Service Description: A service for creating and managing Vertex AI's jobs.

This class provides the ability to make remote calls to the backing service through method calls that map to API methods. Sample code to get started:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (JobServiceClient jobServiceClient = JobServiceClient.create()) {
   LocationName parent = LocationName.of("[PROJECT]", "[LOCATION]");
   CustomJob customJob = CustomJob.newBuilder().build();
   CustomJob response = jobServiceClient.createCustomJob(parent, customJob);
 }
 

Note: close() needs to be called on the JobServiceClient object to clean up resources such as threads. In the example above, try-with-resources is used, which automatically calls close().

The surface of this class includes several types of Java methods for each of the API's methods:

  1. A "flattened" method. With this type of method, the fields of the request type have been converted into function parameters. It may be the case that not all fields are available as parameters, and not every API method will have a flattened method entry point.
  2. A "request object" method. This type of method only takes one parameter, a request object, which must be constructed before the call. Not every API method will have a request object method.
  3. A "callable" method. This type of method takes no parameters and returns an immutable API callable object, which can be used to initiate calls to the service.

See the individual methods for example code.

Many parameters require resource names to be formatted in a particular way. To assist with these names, this class includes a format method for each type of name, and additionally a parse method to extract the individual identifiers contained within names that are returned.

This class can be customized by passing in a custom instance of JobServiceSettings to create(). For example:

To customize credentials:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 JobServiceSettings jobServiceSettings =
     JobServiceSettings.newBuilder()
         .setCredentialsProvider(FixedCredentialsProvider.create(myCredentials))
         .build();
 JobServiceClient jobServiceClient = JobServiceClient.create(jobServiceSettings);
 

To customize the endpoint:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 JobServiceSettings jobServiceSettings =
     JobServiceSettings.newBuilder().setEndpoint(myEndpoint).build();
 JobServiceClient jobServiceClient = JobServiceClient.create(jobServiceSettings);
 

Please refer to the GitHub repository's samples for more quickstart code snippets.

JobServiceClient.ListBatchPredictionJobsFixedSizeCollection

JobServiceClient.ListBatchPredictionJobsPage

JobServiceClient.ListBatchPredictionJobsPagedResponse

JobServiceClient.ListCustomJobsFixedSizeCollection

JobServiceClient.ListCustomJobsPage

JobServiceClient.ListCustomJobsPagedResponse

JobServiceClient.ListDataLabelingJobsFixedSizeCollection

JobServiceClient.ListDataLabelingJobsPage

JobServiceClient.ListDataLabelingJobsPagedResponse

JobServiceClient.ListHyperparameterTuningJobsFixedSizeCollection

JobServiceClient.ListHyperparameterTuningJobsPage

JobServiceClient.ListHyperparameterTuningJobsPagedResponse

JobServiceClient.ListLocationsFixedSizeCollection

JobServiceClient.ListLocationsPage

JobServiceClient.ListLocationsPagedResponse

JobServiceClient.ListModelDeploymentMonitoringJobsFixedSizeCollection

JobServiceClient.ListModelDeploymentMonitoringJobsPage

JobServiceClient.ListModelDeploymentMonitoringJobsPagedResponse

JobServiceClient.ListNasJobsFixedSizeCollection

JobServiceClient.ListNasJobsPage

JobServiceClient.ListNasJobsPagedResponse

JobServiceClient.ListNasTrialDetailsFixedSizeCollection

JobServiceClient.ListNasTrialDetailsPage

JobServiceClient.ListNasTrialDetailsPagedResponse

JobServiceClient.SearchModelDeploymentMonitoringStatsAnomaliesFixedSizeCollection

JobServiceClient.SearchModelDeploymentMonitoringStatsAnomaliesPage

JobServiceClient.SearchModelDeploymentMonitoringStatsAnomaliesPagedResponse

JobServiceGrpc

A service for creating and managing Vertex AI's jobs.

JobServiceGrpc.JobServiceBlockingStub

A stub to allow clients to do synchronous rpc calls to service JobService.

A service for creating and managing Vertex AI's jobs.

JobServiceGrpc.JobServiceFutureStub

A stub to allow clients to do ListenableFuture-style rpc calls to service JobService.

A service for creating and managing Vertex AI's jobs.

JobServiceGrpc.JobServiceImplBase

Base class for the server implementation of the service JobService.

A service for creating and managing Vertex AI's jobs.

JobServiceGrpc.JobServiceStub

A stub to allow clients to do asynchronous rpc calls to service JobService.

A service for creating and managing Vertex AI's jobs.

JobServiceProto

JobServiceSettings

Settings class to configure an instance of JobServiceClient.

The default instance has everything set to sensible defaults:

  • The default service address (aiplatform.googleapis.com) and default port (443) are used.
  • Credentials are acquired automatically through Application Default Credentials.
  • Retries are configured for idempotent methods but not for non-idempotent methods.

The builder of this class is recursive, so contained classes are themselves builders. When build() is called, the tree of builders is called to create the complete settings object.

For example, to set the total timeout of createCustomJob to 30 seconds:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 JobServiceSettings.Builder jobServiceSettingsBuilder = JobServiceSettings.newBuilder();
 jobServiceSettingsBuilder
     .createCustomJobSettings()
     .setRetrySettings(
         jobServiceSettingsBuilder
             .createCustomJobSettings()
             .getRetrySettings()
             .toBuilder()
             .setTotalTimeout(Duration.ofSeconds(30))
             .build());
 JobServiceSettings jobServiceSettings = jobServiceSettingsBuilder.build();
 

JobServiceSettings.Builder

Builder for JobServiceSettings.

JobStateProto

LargeModelReference

Contains information about the Large Model.

Protobuf type google.cloud.aiplatform.v1.LargeModelReference

LargeModelReference.Builder

Contains information about the Large Model.

Protobuf type google.cloud.aiplatform.v1.LargeModelReference

LineageSubgraph

A subgraph of the overall lineage graph. Event edges connect Artifact and Execution nodes.

Protobuf type google.cloud.aiplatform.v1.LineageSubgraph

LineageSubgraph.Builder

A subgraph of the overall lineage graph. Event edges connect Artifact and Execution nodes.

Protobuf type google.cloud.aiplatform.v1.LineageSubgraph

LineageSubgraphProto

ListAnnotationsRequest

Request message for DatasetService.ListAnnotations.

Protobuf type google.cloud.aiplatform.v1.ListAnnotationsRequest

ListAnnotationsRequest.Builder

Request message for DatasetService.ListAnnotations.

Protobuf type google.cloud.aiplatform.v1.ListAnnotationsRequest

ListAnnotationsResponse

Response message for DatasetService.ListAnnotations.

Protobuf type google.cloud.aiplatform.v1.ListAnnotationsResponse

ListAnnotationsResponse.Builder

Response message for DatasetService.ListAnnotations.

Protobuf type google.cloud.aiplatform.v1.ListAnnotationsResponse

ListArtifactsRequest

Request message for MetadataService.ListArtifacts.

Protobuf type google.cloud.aiplatform.v1.ListArtifactsRequest

ListArtifactsRequest.Builder

Request message for MetadataService.ListArtifacts.

Protobuf type google.cloud.aiplatform.v1.ListArtifactsRequest

ListArtifactsResponse

Response message for MetadataService.ListArtifacts.

Protobuf type google.cloud.aiplatform.v1.ListArtifactsResponse

ListArtifactsResponse.Builder

Response message for MetadataService.ListArtifacts.

Protobuf type google.cloud.aiplatform.v1.ListArtifactsResponse

ListBatchPredictionJobsRequest

Request message for JobService.ListBatchPredictionJobs.

Protobuf type google.cloud.aiplatform.v1.ListBatchPredictionJobsRequest

ListBatchPredictionJobsRequest.Builder

Request message for JobService.ListBatchPredictionJobs.

Protobuf type google.cloud.aiplatform.v1.ListBatchPredictionJobsRequest

ListBatchPredictionJobsResponse

Response message for JobService.ListBatchPredictionJobs

Protobuf type google.cloud.aiplatform.v1.ListBatchPredictionJobsResponse

ListBatchPredictionJobsResponse.Builder

Response message for JobService.ListBatchPredictionJobs

Protobuf type google.cloud.aiplatform.v1.ListBatchPredictionJobsResponse

ListContextsRequest

Request message for MetadataService.ListContexts

Protobuf type google.cloud.aiplatform.v1.ListContextsRequest

ListContextsRequest.Builder

Request message for MetadataService.ListContexts

Protobuf type google.cloud.aiplatform.v1.ListContextsRequest

ListContextsResponse

Response message for MetadataService.ListContexts.

Protobuf type google.cloud.aiplatform.v1.ListContextsResponse

ListContextsResponse.Builder

Response message for MetadataService.ListContexts.

Protobuf type google.cloud.aiplatform.v1.ListContextsResponse

ListCustomJobsRequest

Request message for JobService.ListCustomJobs.

Protobuf type google.cloud.aiplatform.v1.ListCustomJobsRequest

ListCustomJobsRequest.Builder

Request message for JobService.ListCustomJobs.

Protobuf type google.cloud.aiplatform.v1.ListCustomJobsRequest

ListCustomJobsResponse

Response message for JobService.ListCustomJobs

Protobuf type google.cloud.aiplatform.v1.ListCustomJobsResponse

ListCustomJobsResponse.Builder

Response message for JobService.ListCustomJobs

Protobuf type google.cloud.aiplatform.v1.ListCustomJobsResponse

ListDataItemsRequest

Request message for DatasetService.ListDataItems.

Protobuf type google.cloud.aiplatform.v1.ListDataItemsRequest

ListDataItemsRequest.Builder

Request message for DatasetService.ListDataItems.

Protobuf type google.cloud.aiplatform.v1.ListDataItemsRequest

ListDataItemsResponse

Response message for DatasetService.ListDataItems.

Protobuf type google.cloud.aiplatform.v1.ListDataItemsResponse

ListDataItemsResponse.Builder

Response message for DatasetService.ListDataItems.

Protobuf type google.cloud.aiplatform.v1.ListDataItemsResponse

ListDataLabelingJobsRequest

Request message for JobService.ListDataLabelingJobs.

Protobuf type google.cloud.aiplatform.v1.ListDataLabelingJobsRequest

ListDataLabelingJobsRequest.Builder

Request message for JobService.ListDataLabelingJobs.

Protobuf type google.cloud.aiplatform.v1.ListDataLabelingJobsRequest

ListDataLabelingJobsResponse

Response message for JobService.ListDataLabelingJobs.

Protobuf type google.cloud.aiplatform.v1.ListDataLabelingJobsResponse

ListDataLabelingJobsResponse.Builder

Response message for JobService.ListDataLabelingJobs.

Protobuf type google.cloud.aiplatform.v1.ListDataLabelingJobsResponse

ListDatasetsRequest

Request message for DatasetService.ListDatasets.

Protobuf type google.cloud.aiplatform.v1.ListDatasetsRequest

ListDatasetsRequest.Builder

Request message for DatasetService.ListDatasets.

Protobuf type google.cloud.aiplatform.v1.ListDatasetsRequest

ListDatasetsResponse

Response message for DatasetService.ListDatasets.

Protobuf type google.cloud.aiplatform.v1.ListDatasetsResponse

ListDatasetsResponse.Builder

Response message for DatasetService.ListDatasets.

Protobuf type google.cloud.aiplatform.v1.ListDatasetsResponse

ListEndpointsRequest

Request message for EndpointService.ListEndpoints.

Protobuf type google.cloud.aiplatform.v1.ListEndpointsRequest

ListEndpointsRequest.Builder

Request message for EndpointService.ListEndpoints.

Protobuf type google.cloud.aiplatform.v1.ListEndpointsRequest

ListEndpointsResponse

Response message for EndpointService.ListEndpoints.

Protobuf type google.cloud.aiplatform.v1.ListEndpointsResponse

ListEndpointsResponse.Builder

Response message for EndpointService.ListEndpoints.

Protobuf type google.cloud.aiplatform.v1.ListEndpointsResponse

ListEntityTypesRequest

Request message for FeaturestoreService.ListEntityTypes.

Protobuf type google.cloud.aiplatform.v1.ListEntityTypesRequest

ListEntityTypesRequest.Builder

Request message for FeaturestoreService.ListEntityTypes.

Protobuf type google.cloud.aiplatform.v1.ListEntityTypesRequest

ListEntityTypesResponse

Response message for FeaturestoreService.ListEntityTypes.

Protobuf type google.cloud.aiplatform.v1.ListEntityTypesResponse

ListEntityTypesResponse.Builder

Response message for FeaturestoreService.ListEntityTypes.

Protobuf type google.cloud.aiplatform.v1.ListEntityTypesResponse

ListExecutionsRequest

Request message for MetadataService.ListExecutions.

Protobuf type google.cloud.aiplatform.v1.ListExecutionsRequest

ListExecutionsRequest.Builder

Request message for MetadataService.ListExecutions.

Protobuf type google.cloud.aiplatform.v1.ListExecutionsRequest

ListExecutionsResponse

Response message for MetadataService.ListExecutions.

Protobuf type google.cloud.aiplatform.v1.ListExecutionsResponse

ListExecutionsResponse.Builder

Response message for MetadataService.ListExecutions.

Protobuf type google.cloud.aiplatform.v1.ListExecutionsResponse

ListFeaturesRequest

Request message for FeaturestoreService.ListFeatures.

Protobuf type google.cloud.aiplatform.v1.ListFeaturesRequest

ListFeaturesRequest.Builder

Request message for FeaturestoreService.ListFeatures.

Protobuf type google.cloud.aiplatform.v1.ListFeaturesRequest

ListFeaturesResponse

Response message for FeaturestoreService.ListFeatures.

Protobuf type google.cloud.aiplatform.v1.ListFeaturesResponse

ListFeaturesResponse.Builder

Response message for FeaturestoreService.ListFeatures.

Protobuf type google.cloud.aiplatform.v1.ListFeaturesResponse

ListFeaturestoresRequest

Request message for FeaturestoreService.ListFeaturestores.

Protobuf type google.cloud.aiplatform.v1.ListFeaturestoresRequest

ListFeaturestoresRequest.Builder

Request message for FeaturestoreService.ListFeaturestores.

Protobuf type google.cloud.aiplatform.v1.ListFeaturestoresRequest

ListFeaturestoresResponse

Response message for FeaturestoreService.ListFeaturestores.

Protobuf type google.cloud.aiplatform.v1.ListFeaturestoresResponse

ListFeaturestoresResponse.Builder

Response message for FeaturestoreService.ListFeaturestores.

Protobuf type google.cloud.aiplatform.v1.ListFeaturestoresResponse

ListHyperparameterTuningJobsRequest

Request message for JobService.ListHyperparameterTuningJobs.

Protobuf type google.cloud.aiplatform.v1.ListHyperparameterTuningJobsRequest

ListHyperparameterTuningJobsRequest.Builder

Request message for JobService.ListHyperparameterTuningJobs.

Protobuf type google.cloud.aiplatform.v1.ListHyperparameterTuningJobsRequest

ListHyperparameterTuningJobsResponse

Response message for JobService.ListHyperparameterTuningJobs

Protobuf type google.cloud.aiplatform.v1.ListHyperparameterTuningJobsResponse

ListHyperparameterTuningJobsResponse.Builder

Response message for JobService.ListHyperparameterTuningJobs

Protobuf type google.cloud.aiplatform.v1.ListHyperparameterTuningJobsResponse

ListIndexEndpointsRequest

Request message for IndexEndpointService.ListIndexEndpoints.

Protobuf type google.cloud.aiplatform.v1.ListIndexEndpointsRequest

ListIndexEndpointsRequest.Builder

Request message for IndexEndpointService.ListIndexEndpoints.

Protobuf type google.cloud.aiplatform.v1.ListIndexEndpointsRequest

ListIndexEndpointsResponse

Response message for IndexEndpointService.ListIndexEndpoints.

Protobuf type google.cloud.aiplatform.v1.ListIndexEndpointsResponse

ListIndexEndpointsResponse.Builder

Response message for IndexEndpointService.ListIndexEndpoints.

Protobuf type google.cloud.aiplatform.v1.ListIndexEndpointsResponse

ListIndexesRequest

Request message for IndexService.ListIndexes.

Protobuf type google.cloud.aiplatform.v1.ListIndexesRequest

ListIndexesRequest.Builder

Request message for IndexService.ListIndexes.

Protobuf type google.cloud.aiplatform.v1.ListIndexesRequest

ListIndexesResponse

Response message for IndexService.ListIndexes.

Protobuf type google.cloud.aiplatform.v1.ListIndexesResponse

ListIndexesResponse.Builder

Response message for IndexService.ListIndexes.

Protobuf type google.cloud.aiplatform.v1.ListIndexesResponse

ListMetadataSchemasRequest

Request message for MetadataService.ListMetadataSchemas.

Protobuf type google.cloud.aiplatform.v1.ListMetadataSchemasRequest

ListMetadataSchemasRequest.Builder

Request message for MetadataService.ListMetadataSchemas.

Protobuf type google.cloud.aiplatform.v1.ListMetadataSchemasRequest

ListMetadataSchemasResponse

Response message for MetadataService.ListMetadataSchemas.

Protobuf type google.cloud.aiplatform.v1.ListMetadataSchemasResponse

ListMetadataSchemasResponse.Builder

Response message for MetadataService.ListMetadataSchemas.

Protobuf type google.cloud.aiplatform.v1.ListMetadataSchemasResponse

ListMetadataStoresRequest

Request message for MetadataService.ListMetadataStores.

Protobuf type google.cloud.aiplatform.v1.ListMetadataStoresRequest

ListMetadataStoresRequest.Builder

Request message for MetadataService.ListMetadataStores.

Protobuf type google.cloud.aiplatform.v1.ListMetadataStoresRequest

ListMetadataStoresResponse

Response message for MetadataService.ListMetadataStores.

Protobuf type google.cloud.aiplatform.v1.ListMetadataStoresResponse

ListMetadataStoresResponse.Builder

Response message for MetadataService.ListMetadataStores.

Protobuf type google.cloud.aiplatform.v1.ListMetadataStoresResponse

ListModelDeploymentMonitoringJobsRequest

Request message for JobService.ListModelDeploymentMonitoringJobs.

Protobuf type google.cloud.aiplatform.v1.ListModelDeploymentMonitoringJobsRequest

ListModelDeploymentMonitoringJobsRequest.Builder

Request message for JobService.ListModelDeploymentMonitoringJobs.

Protobuf type google.cloud.aiplatform.v1.ListModelDeploymentMonitoringJobsRequest

ListModelDeploymentMonitoringJobsResponse

Response message for JobService.ListModelDeploymentMonitoringJobs.

Protobuf type google.cloud.aiplatform.v1.ListModelDeploymentMonitoringJobsResponse

ListModelDeploymentMonitoringJobsResponse.Builder

Response message for JobService.ListModelDeploymentMonitoringJobs.

Protobuf type google.cloud.aiplatform.v1.ListModelDeploymentMonitoringJobsResponse

ListModelEvaluationSlicesRequest

Request message for ModelService.ListModelEvaluationSlices.

Protobuf type google.cloud.aiplatform.v1.ListModelEvaluationSlicesRequest

ListModelEvaluationSlicesRequest.Builder

Request message for ModelService.ListModelEvaluationSlices.

Protobuf type google.cloud.aiplatform.v1.ListModelEvaluationSlicesRequest

ListModelEvaluationSlicesResponse

Response message for ModelService.ListModelEvaluationSlices.

Protobuf type google.cloud.aiplatform.v1.ListModelEvaluationSlicesResponse

ListModelEvaluationSlicesResponse.Builder

Response message for ModelService.ListModelEvaluationSlices.

Protobuf type google.cloud.aiplatform.v1.ListModelEvaluationSlicesResponse

ListModelEvaluationsRequest

Request message for ModelService.ListModelEvaluations.

Protobuf type google.cloud.aiplatform.v1.ListModelEvaluationsRequest

ListModelEvaluationsRequest.Builder

Request message for ModelService.ListModelEvaluations.

Protobuf type google.cloud.aiplatform.v1.ListModelEvaluationsRequest

ListModelEvaluationsResponse

Response message for ModelService.ListModelEvaluations.

Protobuf type google.cloud.aiplatform.v1.ListModelEvaluationsResponse

ListModelEvaluationsResponse.Builder

Response message for ModelService.ListModelEvaluations.

Protobuf type google.cloud.aiplatform.v1.ListModelEvaluationsResponse

ListModelVersionsRequest

Request message for ModelService.ListModelVersions.

Protobuf type google.cloud.aiplatform.v1.ListModelVersionsRequest

ListModelVersionsRequest.Builder

Request message for ModelService.ListModelVersions.

Protobuf type google.cloud.aiplatform.v1.ListModelVersionsRequest

ListModelVersionsResponse

Response message for ModelService.ListModelVersions

Protobuf type google.cloud.aiplatform.v1.ListModelVersionsResponse

ListModelVersionsResponse.Builder

Response message for ModelService.ListModelVersions

Protobuf type google.cloud.aiplatform.v1.ListModelVersionsResponse

ListModelsRequest

Request message for ModelService.ListModels.

Protobuf type google.cloud.aiplatform.v1.ListModelsRequest

ListModelsRequest.Builder

Request message for ModelService.ListModels.

Protobuf type google.cloud.aiplatform.v1.ListModelsRequest

ListModelsResponse

Response message for ModelService.ListModels

Protobuf type google.cloud.aiplatform.v1.ListModelsResponse

ListModelsResponse.Builder

Response message for ModelService.ListModels

Protobuf type google.cloud.aiplatform.v1.ListModelsResponse

ListNasJobsRequest

Request message for JobService.ListNasJobs.

Protobuf type google.cloud.aiplatform.v1.ListNasJobsRequest

ListNasJobsRequest.Builder

Request message for JobService.ListNasJobs.

Protobuf type google.cloud.aiplatform.v1.ListNasJobsRequest

ListNasJobsResponse

Response message for JobService.ListNasJobs

Protobuf type google.cloud.aiplatform.v1.ListNasJobsResponse

ListNasJobsResponse.Builder

Response message for JobService.ListNasJobs

Protobuf type google.cloud.aiplatform.v1.ListNasJobsResponse

ListNasTrialDetailsRequest

Request message for JobService.ListNasTrialDetails.

Protobuf type google.cloud.aiplatform.v1.ListNasTrialDetailsRequest

ListNasTrialDetailsRequest.Builder

Request message for JobService.ListNasTrialDetails.

Protobuf type google.cloud.aiplatform.v1.ListNasTrialDetailsRequest

ListNasTrialDetailsResponse

Response message for JobService.ListNasTrialDetails

Protobuf type google.cloud.aiplatform.v1.ListNasTrialDetailsResponse

ListNasTrialDetailsResponse.Builder

Response message for JobService.ListNasTrialDetails

Protobuf type google.cloud.aiplatform.v1.ListNasTrialDetailsResponse

ListOptimalTrialsRequest

Request message for VizierService.ListOptimalTrials.

Protobuf type google.cloud.aiplatform.v1.ListOptimalTrialsRequest

ListOptimalTrialsRequest.Builder

Request message for VizierService.ListOptimalTrials.

Protobuf type google.cloud.aiplatform.v1.ListOptimalTrialsRequest

ListOptimalTrialsResponse

Response message for VizierService.ListOptimalTrials.

Protobuf type google.cloud.aiplatform.v1.ListOptimalTrialsResponse

ListOptimalTrialsResponse.Builder

Response message for VizierService.ListOptimalTrials.

Protobuf type google.cloud.aiplatform.v1.ListOptimalTrialsResponse

ListPipelineJobsRequest

Request message for PipelineService.ListPipelineJobs.

Protobuf type google.cloud.aiplatform.v1.ListPipelineJobsRequest

ListPipelineJobsRequest.Builder

Request message for PipelineService.ListPipelineJobs.

Protobuf type google.cloud.aiplatform.v1.ListPipelineJobsRequest

ListPipelineJobsResponse

Response message for PipelineService.ListPipelineJobs

Protobuf type google.cloud.aiplatform.v1.ListPipelineJobsResponse

ListPipelineJobsResponse.Builder

Response message for PipelineService.ListPipelineJobs

Protobuf type google.cloud.aiplatform.v1.ListPipelineJobsResponse

ListSavedQueriesRequest

Request message for DatasetService.ListSavedQueries.

Protobuf type google.cloud.aiplatform.v1.ListSavedQueriesRequest

ListSavedQueriesRequest.Builder

Request message for DatasetService.ListSavedQueries.

Protobuf type google.cloud.aiplatform.v1.ListSavedQueriesRequest

ListSavedQueriesResponse

Response message for DatasetService.ListSavedQueries.

Protobuf type google.cloud.aiplatform.v1.ListSavedQueriesResponse

ListSavedQueriesResponse.Builder

Response message for DatasetService.ListSavedQueries.

Protobuf type google.cloud.aiplatform.v1.ListSavedQueriesResponse

ListSchedulesRequest

Request message for ScheduleService.ListSchedules.

Protobuf type google.cloud.aiplatform.v1.ListSchedulesRequest

ListSchedulesRequest.Builder

Request message for ScheduleService.ListSchedules.

Protobuf type google.cloud.aiplatform.v1.ListSchedulesRequest

ListSchedulesResponse

Response message for ScheduleService.ListSchedules

Protobuf type google.cloud.aiplatform.v1.ListSchedulesResponse

ListSchedulesResponse.Builder

Response message for ScheduleService.ListSchedules

Protobuf type google.cloud.aiplatform.v1.ListSchedulesResponse

ListSpecialistPoolsRequest

Request message for SpecialistPoolService.ListSpecialistPools.

Protobuf type google.cloud.aiplatform.v1.ListSpecialistPoolsRequest

ListSpecialistPoolsRequest.Builder

Request message for SpecialistPoolService.ListSpecialistPools.

Protobuf type google.cloud.aiplatform.v1.ListSpecialistPoolsRequest

ListSpecialistPoolsResponse

Response message for SpecialistPoolService.ListSpecialistPools.

Protobuf type google.cloud.aiplatform.v1.ListSpecialistPoolsResponse

ListSpecialistPoolsResponse.Builder

Response message for SpecialistPoolService.ListSpecialistPools.

Protobuf type google.cloud.aiplatform.v1.ListSpecialistPoolsResponse

ListStudiesRequest

Request message for VizierService.ListStudies.

Protobuf type google.cloud.aiplatform.v1.ListStudiesRequest

ListStudiesRequest.Builder

Request message for VizierService.ListStudies.

Protobuf type google.cloud.aiplatform.v1.ListStudiesRequest

ListStudiesResponse

Response message for VizierService.ListStudies.

Protobuf type google.cloud.aiplatform.v1.ListStudiesResponse

ListStudiesResponse.Builder

Response message for VizierService.ListStudies.

Protobuf type google.cloud.aiplatform.v1.ListStudiesResponse

ListTensorboardExperimentsRequest

Request message for TensorboardService.ListTensorboardExperiments.

Protobuf type google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest

ListTensorboardExperimentsRequest.Builder

Request message for TensorboardService.ListTensorboardExperiments.

Protobuf type google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest

ListTensorboardExperimentsResponse

Response message for TensorboardService.ListTensorboardExperiments.

Protobuf type google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse

ListTensorboardExperimentsResponse.Builder

Response message for TensorboardService.ListTensorboardExperiments.

Protobuf type google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse

ListTensorboardRunsRequest

Request message for TensorboardService.ListTensorboardRuns.

Protobuf type google.cloud.aiplatform.v1.ListTensorboardRunsRequest

ListTensorboardRunsRequest.Builder

Request message for TensorboardService.ListTensorboardRuns.

Protobuf type google.cloud.aiplatform.v1.ListTensorboardRunsRequest

ListTensorboardRunsResponse

Response message for TensorboardService.ListTensorboardRuns.

Protobuf type google.cloud.aiplatform.v1.ListTensorboardRunsResponse

ListTensorboardRunsResponse.Builder

Response message for TensorboardService.ListTensorboardRuns.

Protobuf type google.cloud.aiplatform.v1.ListTensorboardRunsResponse

ListTensorboardTimeSeriesRequest

Request message for TensorboardService.ListTensorboardTimeSeries.

Protobuf type google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest

ListTensorboardTimeSeriesRequest.Builder

Request message for TensorboardService.ListTensorboardTimeSeries.

Protobuf type google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest

ListTensorboardTimeSeriesResponse

Response message for TensorboardService.ListTensorboardTimeSeries.

Protobuf type google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse

ListTensorboardTimeSeriesResponse.Builder

Response message for TensorboardService.ListTensorboardTimeSeries.

Protobuf type google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse

ListTensorboardsRequest

Request message for TensorboardService.ListTensorboards.

Protobuf type google.cloud.aiplatform.v1.ListTensorboardsRequest

ListTensorboardsRequest.Builder

Request message for TensorboardService.ListTensorboards.

Protobuf type google.cloud.aiplatform.v1.ListTensorboardsRequest

ListTensorboardsResponse

Response message for TensorboardService.ListTensorboards.

Protobuf type google.cloud.aiplatform.v1.ListTensorboardsResponse

ListTensorboardsResponse.Builder

Response message for TensorboardService.ListTensorboards.

Protobuf type google.cloud.aiplatform.v1.ListTensorboardsResponse

ListTrainingPipelinesRequest

Request message for PipelineService.ListTrainingPipelines.

Protobuf type google.cloud.aiplatform.v1.ListTrainingPipelinesRequest

ListTrainingPipelinesRequest.Builder

Request message for PipelineService.ListTrainingPipelines.

Protobuf type google.cloud.aiplatform.v1.ListTrainingPipelinesRequest

ListTrainingPipelinesResponse

Response message for PipelineService.ListTrainingPipelines

Protobuf type google.cloud.aiplatform.v1.ListTrainingPipelinesResponse

ListTrainingPipelinesResponse.Builder

Response message for PipelineService.ListTrainingPipelines

Protobuf type google.cloud.aiplatform.v1.ListTrainingPipelinesResponse

ListTrialsRequest

Request message for VizierService.ListTrials.

Protobuf type google.cloud.aiplatform.v1.ListTrialsRequest

ListTrialsRequest.Builder

Request message for VizierService.ListTrials.

Protobuf type google.cloud.aiplatform.v1.ListTrialsRequest

ListTrialsResponse

Response message for VizierService.ListTrials.

Protobuf type google.cloud.aiplatform.v1.ListTrialsResponse

ListTrialsResponse.Builder

Response message for VizierService.ListTrials.

Protobuf type google.cloud.aiplatform.v1.ListTrialsResponse

LocationName

LocationName.Builder

Builder for projects/{project}/locations/{location}.

LookupStudyRequest

Request message for VizierService.LookupStudy.

Protobuf type google.cloud.aiplatform.v1.LookupStudyRequest

LookupStudyRequest.Builder

Request message for VizierService.LookupStudy.

Protobuf type google.cloud.aiplatform.v1.LookupStudyRequest

MachineResourcesProto

MachineSpec

Specification of a single machine.

Protobuf type google.cloud.aiplatform.v1.MachineSpec

MachineSpec.Builder

Specification of a single machine.

Protobuf type google.cloud.aiplatform.v1.MachineSpec

ManualBatchTuningParameters

Manual batch tuning parameters.

Protobuf type google.cloud.aiplatform.v1.ManualBatchTuningParameters

ManualBatchTuningParameters.Builder

Manual batch tuning parameters.

Protobuf type google.cloud.aiplatform.v1.ManualBatchTuningParameters

ManualBatchTuningParametersProto

MatchServiceClient

Service Description: MatchService is a Google managed service for efficient vector similarity search at scale.

This class provides the ability to make remote calls to the backing service through method calls that map to API methods. Sample code to get started:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (MatchServiceClient matchServiceClient = MatchServiceClient.create()) {
   FindNeighborsRequest request =
       FindNeighborsRequest.newBuilder()
           .setIndexEndpoint(
               IndexEndpointName.of("[PROJECT]", "[LOCATION]", "[INDEX_ENDPOINT]").toString())
           .setDeployedIndexId("deployedIndexId-1101212953")
           .addAllQueries(new ArrayList<FindNeighborsRequest.Query>())
           .setReturnFullDatapoint(true)
           .build();
   FindNeighborsResponse response = matchServiceClient.findNeighbors(request);
 }
 

Note: close() needs to be called on the MatchServiceClient object to clean up resources such as threads. In the example above, try-with-resources is used, which automatically calls close().

The surface of this class includes several types of Java methods for each of the API's methods:

  1. A "flattened" method. With this type of method, the fields of the request type have been converted into function parameters. It may be the case that not all fields are available as parameters, and not every API method will have a flattened method entry point.
  2. A "request object" method. This type of method only takes one parameter, a request object, which must be constructed before the call. Not every API method will have a request object method.
  3. A "callable" method. This type of method takes no parameters and returns an immutable API callable object, which can be used to initiate calls to the service.

See the individual methods for example code.

Many parameters require resource names to be formatted in a particular way. To assist with these names, this class includes a format method for each type of name, and additionally a parse method to extract the individual identifiers contained within names that are returned.

This class can be customized by passing in a custom instance of MatchServiceSettings to create(). For example:

To customize credentials:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 MatchServiceSettings matchServiceSettings =
     MatchServiceSettings.newBuilder()
         .setCredentialsProvider(FixedCredentialsProvider.create(myCredentials))
         .build();
 MatchServiceClient matchServiceClient = MatchServiceClient.create(matchServiceSettings);
 

To customize the endpoint:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 MatchServiceSettings matchServiceSettings =
     MatchServiceSettings.newBuilder().setEndpoint(myEndpoint).build();
 MatchServiceClient matchServiceClient = MatchServiceClient.create(matchServiceSettings);
 

Please refer to the GitHub repository's samples for more quickstart code snippets.

MatchServiceClient.ListLocationsFixedSizeCollection

MatchServiceClient.ListLocationsPage

MatchServiceClient.ListLocationsPagedResponse

MatchServiceGrpc

MatchService is a Google managed service for efficient vector similarity search at scale.

MatchServiceGrpc.MatchServiceBlockingStub

A stub to allow clients to do synchronous rpc calls to service MatchService.

MatchService is a Google managed service for efficient vector similarity search at scale.

MatchServiceGrpc.MatchServiceFutureStub

A stub to allow clients to do ListenableFuture-style rpc calls to service MatchService.

MatchService is a Google managed service for efficient vector similarity search at scale.

MatchServiceGrpc.MatchServiceImplBase

Base class for the server implementation of the service MatchService.

MatchService is a Google managed service for efficient vector similarity search at scale.

MatchServiceGrpc.MatchServiceStub

A stub to allow clients to do asynchronous rpc calls to service MatchService.

MatchService is a Google managed service for efficient vector similarity search at scale.

MatchServiceProto

MatchServiceSettings

Settings class to configure an instance of MatchServiceClient.

The default instance has everything set to sensible defaults:

  • The default service address (aiplatform.googleapis.com) and default port (443) are used.
  • Credentials are acquired automatically through Application Default Credentials.
  • Retries are configured for idempotent methods but not for non-idempotent methods.

The builder of this class is recursive, so contained classes are themselves builders. When build() is called, the tree of builders is called to create the complete settings object.

For example, to set the total timeout of findNeighbors to 30 seconds:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 MatchServiceSettings.Builder matchServiceSettingsBuilder = MatchServiceSettings.newBuilder();
 matchServiceSettingsBuilder
     .findNeighborsSettings()
     .setRetrySettings(
         matchServiceSettingsBuilder
             .findNeighborsSettings()
             .getRetrySettings()
             .toBuilder()
             .setTotalTimeout(Duration.ofSeconds(30))
             .build());
 MatchServiceSettings matchServiceSettings = matchServiceSettingsBuilder.build();
 

MatchServiceSettings.Builder

Builder for MatchServiceSettings.

Measurement

A message representing a Measurement of a Trial. A Measurement contains the Metrics got by executing a Trial using suggested hyperparameter values.

Protobuf type google.cloud.aiplatform.v1.Measurement

Measurement.Builder

A message representing a Measurement of a Trial. A Measurement contains the Metrics got by executing a Trial using suggested hyperparameter values.

Protobuf type google.cloud.aiplatform.v1.Measurement

Measurement.Metric

A message representing a metric in the measurement.

Protobuf type google.cloud.aiplatform.v1.Measurement.Metric

Measurement.Metric.Builder

A message representing a metric in the measurement.

Protobuf type google.cloud.aiplatform.v1.Measurement.Metric

MergeVersionAliasesRequest

Request message for ModelService.MergeVersionAliases.

Protobuf type google.cloud.aiplatform.v1.MergeVersionAliasesRequest

MergeVersionAliasesRequest.Builder

Request message for ModelService.MergeVersionAliases.

Protobuf type google.cloud.aiplatform.v1.MergeVersionAliasesRequest

MetadataProto

MetadataSchema

Instance of a general MetadataSchema.

Protobuf type google.cloud.aiplatform.v1.MetadataSchema

MetadataSchema.Builder

Instance of a general MetadataSchema.

Protobuf type google.cloud.aiplatform.v1.MetadataSchema

MetadataSchemaName

MetadataSchemaName.Builder

Builder for projects/{project}/locations/{location}/metadataStores/{metadata_store}/metadataSchemas/{metadata_schema}.

MetadataSchemaProto

MetadataServiceClient

Service Description: Service for reading and writing metadata entries.

This class provides the ability to make remote calls to the backing service through method calls that map to API methods. Sample code to get started:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (MetadataServiceClient metadataServiceClient = MetadataServiceClient.create()) {
   MetadataStoreName name = MetadataStoreName.of("[PROJECT]", "[LOCATION]", "[METADATA_STORE]");
   MetadataStore response = metadataServiceClient.getMetadataStore(name);
 }
 

Note: close() needs to be called on the MetadataServiceClient object to clean up resources such as threads. In the example above, try-with-resources is used, which automatically calls close().

The surface of this class includes several types of Java methods for each of the API's methods:

  1. A "flattened" method. With this type of method, the fields of the request type have been converted into function parameters. It may be the case that not all fields are available as parameters, and not every API method will have a flattened method entry point.
  2. A "request object" method. This type of method only takes one parameter, a request object, which must be constructed before the call. Not every API method will have a request object method.
  3. A "callable" method. This type of method takes no parameters and returns an immutable API callable object, which can be used to initiate calls to the service.

See the individual methods for example code.

Many parameters require resource names to be formatted in a particular way. To assist with these names, this class includes a format method for each type of name, and additionally a parse method to extract the individual identifiers contained within names that are returned.

This class can be customized by passing in a custom instance of MetadataServiceSettings to create(). For example:

To customize credentials:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 MetadataServiceSettings metadataServiceSettings =
     MetadataServiceSettings.newBuilder()
         .setCredentialsProvider(FixedCredentialsProvider.create(myCredentials))
         .build();
 MetadataServiceClient metadataServiceClient =
     MetadataServiceClient.create(metadataServiceSettings);
 

To customize the endpoint:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 MetadataServiceSettings metadataServiceSettings =
     MetadataServiceSettings.newBuilder().setEndpoint(myEndpoint).build();
 MetadataServiceClient metadataServiceClient =
     MetadataServiceClient.create(metadataServiceSettings);
 

Please refer to the GitHub repository's samples for more quickstart code snippets.

MetadataServiceClient.ListArtifactsFixedSizeCollection

MetadataServiceClient.ListArtifactsPage

MetadataServiceClient.ListArtifactsPagedResponse

MetadataServiceClient.ListContextsFixedSizeCollection

MetadataServiceClient.ListContextsPage

MetadataServiceClient.ListContextsPagedResponse

MetadataServiceClient.ListExecutionsFixedSizeCollection

MetadataServiceClient.ListExecutionsPage

MetadataServiceClient.ListExecutionsPagedResponse

MetadataServiceClient.ListLocationsFixedSizeCollection

MetadataServiceClient.ListLocationsPage

MetadataServiceClient.ListLocationsPagedResponse

MetadataServiceClient.ListMetadataSchemasFixedSizeCollection

MetadataServiceClient.ListMetadataSchemasPage

MetadataServiceClient.ListMetadataSchemasPagedResponse

MetadataServiceClient.ListMetadataStoresFixedSizeCollection

MetadataServiceClient.ListMetadataStoresPage

MetadataServiceClient.ListMetadataStoresPagedResponse

MetadataServiceGrpc

Service for reading and writing metadata entries.

MetadataServiceGrpc.MetadataServiceBlockingStub

A stub to allow clients to do synchronous rpc calls to service MetadataService.

Service for reading and writing metadata entries.

MetadataServiceGrpc.MetadataServiceFutureStub

A stub to allow clients to do ListenableFuture-style rpc calls to service MetadataService.

Service for reading and writing metadata entries.

MetadataServiceGrpc.MetadataServiceImplBase

Base class for the server implementation of the service MetadataService.

Service for reading and writing metadata entries.

MetadataServiceGrpc.MetadataServiceStub

A stub to allow clients to do asynchronous rpc calls to service MetadataService.

Service for reading and writing metadata entries.

MetadataServiceProto

MetadataServiceSettings

Settings class to configure an instance of MetadataServiceClient.

The default instance has everything set to sensible defaults:

  • The default service address (aiplatform.googleapis.com) and default port (443) are used.
  • Credentials are acquired automatically through Application Default Credentials.
  • Retries are configured for idempotent methods but not for non-idempotent methods.

The builder of this class is recursive, so contained classes are themselves builders. When build() is called, the tree of builders is called to create the complete settings object.

For example, to set the total timeout of getMetadataStore to 30 seconds:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 MetadataServiceSettings.Builder metadataServiceSettingsBuilder =
     MetadataServiceSettings.newBuilder();
 metadataServiceSettingsBuilder
     .getMetadataStoreSettings()
     .setRetrySettings(
         metadataServiceSettingsBuilder
             .getMetadataStoreSettings()
             .getRetrySettings()
             .toBuilder()
             .setTotalTimeout(Duration.ofSeconds(30))
             .build());
 MetadataServiceSettings metadataServiceSettings = metadataServiceSettingsBuilder.build();
 

MetadataServiceSettings.Builder

Builder for MetadataServiceSettings.

MetadataStore

Instance of a metadata store. Contains a set of metadata that can be queried.

Protobuf type google.cloud.aiplatform.v1.MetadataStore

MetadataStore.Builder

Instance of a metadata store. Contains a set of metadata that can be queried.

Protobuf type google.cloud.aiplatform.v1.MetadataStore

MetadataStore.MetadataStoreState

Represents state information for a MetadataStore.

Protobuf type google.cloud.aiplatform.v1.MetadataStore.MetadataStoreState

MetadataStore.MetadataStoreState.Builder

Represents state information for a MetadataStore.

Protobuf type google.cloud.aiplatform.v1.MetadataStore.MetadataStoreState

MetadataStoreName

MetadataStoreName.Builder

Builder for projects/{project}/locations/{location}/metadataStores/{metadata_store}.

MigratableResource

Represents one resource that exists in automl.googleapis.com, datalabeling.googleapis.com or ml.googleapis.com.

Protobuf type google.cloud.aiplatform.v1.MigratableResource

MigratableResource.AutomlDataset

Represents one Dataset in automl.googleapis.com.

Protobuf type google.cloud.aiplatform.v1.MigratableResource.AutomlDataset

MigratableResource.AutomlDataset.Builder

Represents one Dataset in automl.googleapis.com.

Protobuf type google.cloud.aiplatform.v1.MigratableResource.AutomlDataset

MigratableResource.AutomlModel

Represents one Model in automl.googleapis.com.

Protobuf type google.cloud.aiplatform.v1.MigratableResource.AutomlModel

MigratableResource.AutomlModel.Builder

Represents one Model in automl.googleapis.com.

Protobuf type google.cloud.aiplatform.v1.MigratableResource.AutomlModel

MigratableResource.Builder

Represents one resource that exists in automl.googleapis.com, datalabeling.googleapis.com or ml.googleapis.com.

Protobuf type google.cloud.aiplatform.v1.MigratableResource

MigratableResource.DataLabelingDataset

Represents one Dataset in datalabeling.googleapis.com.

Protobuf type google.cloud.aiplatform.v1.MigratableResource.DataLabelingDataset

MigratableResource.DataLabelingDataset.Builder

Represents one Dataset in datalabeling.googleapis.com.

Protobuf type google.cloud.aiplatform.v1.MigratableResource.DataLabelingDataset

MigratableResource.DataLabelingDataset.DataLabelingAnnotatedDataset

Represents one AnnotatedDataset in datalabeling.googleapis.com.

Protobuf type google.cloud.aiplatform.v1.MigratableResource.DataLabelingDataset.DataLabelingAnnotatedDataset

MigratableResource.DataLabelingDataset.DataLabelingAnnotatedDataset.Builder

Represents one AnnotatedDataset in datalabeling.googleapis.com.

Protobuf type google.cloud.aiplatform.v1.MigratableResource.DataLabelingDataset.DataLabelingAnnotatedDataset

MigratableResource.MlEngineModelVersion

Represents one model Version in ml.googleapis.com.

Protobuf type google.cloud.aiplatform.v1.MigratableResource.MlEngineModelVersion

MigratableResource.MlEngineModelVersion.Builder

Represents one model Version in ml.googleapis.com.

Protobuf type google.cloud.aiplatform.v1.MigratableResource.MlEngineModelVersion

MigratableResourceProto

MigrateResourceRequest

Config of migrating one resource from automl.googleapis.com, datalabeling.googleapis.com and ml.googleapis.com to Vertex AI.

Protobuf type google.cloud.aiplatform.v1.MigrateResourceRequest

MigrateResourceRequest.Builder

Config of migrating one resource from automl.googleapis.com, datalabeling.googleapis.com and ml.googleapis.com to Vertex AI.

Protobuf type google.cloud.aiplatform.v1.MigrateResourceRequest

MigrateResourceRequest.MigrateAutomlDatasetConfig

Config for migrating Dataset in automl.googleapis.com to Vertex AI's Dataset.

Protobuf type google.cloud.aiplatform.v1.MigrateResourceRequest.MigrateAutomlDatasetConfig

MigrateResourceRequest.MigrateAutomlDatasetConfig.Builder

Config for migrating Dataset in automl.googleapis.com to Vertex AI's Dataset.

Protobuf type google.cloud.aiplatform.v1.MigrateResourceRequest.MigrateAutomlDatasetConfig

MigrateResourceRequest.MigrateAutomlModelConfig

Config for migrating Model in automl.googleapis.com to Vertex AI's Model.

Protobuf type google.cloud.aiplatform.v1.MigrateResourceRequest.MigrateAutomlModelConfig

MigrateResourceRequest.MigrateAutomlModelConfig.Builder

Config for migrating Model in automl.googleapis.com to Vertex AI's Model.

Protobuf type google.cloud.aiplatform.v1.MigrateResourceRequest.MigrateAutomlModelConfig

MigrateResourceRequest.MigrateDataLabelingDatasetConfig

Config for migrating Dataset in datalabeling.googleapis.com to Vertex AI's Dataset.

Protobuf type google.cloud.aiplatform.v1.MigrateResourceRequest.MigrateDataLabelingDatasetConfig

MigrateResourceRequest.MigrateDataLabelingDatasetConfig.Builder

Config for migrating Dataset in datalabeling.googleapis.com to Vertex AI's Dataset.

Protobuf type google.cloud.aiplatform.v1.MigrateResourceRequest.MigrateDataLabelingDatasetConfig

MigrateResourceRequest.MigrateDataLabelingDatasetConfig.MigrateDataLabelingAnnotatedDatasetConfig

Config for migrating AnnotatedDataset in datalabeling.googleapis.com to Vertex AI's SavedQuery.

Protobuf type google.cloud.aiplatform.v1.MigrateResourceRequest.MigrateDataLabelingDatasetConfig.MigrateDataLabelingAnnotatedDatasetConfig

MigrateResourceRequest.MigrateDataLabelingDatasetConfig.MigrateDataLabelingAnnotatedDatasetConfig.Builder

Config for migrating AnnotatedDataset in datalabeling.googleapis.com to Vertex AI's SavedQuery.

Protobuf type google.cloud.aiplatform.v1.MigrateResourceRequest.MigrateDataLabelingDatasetConfig.MigrateDataLabelingAnnotatedDatasetConfig

MigrateResourceRequest.MigrateMlEngineModelVersionConfig

Config for migrating version in ml.googleapis.com to Vertex AI's Model.

Protobuf type google.cloud.aiplatform.v1.MigrateResourceRequest.MigrateMlEngineModelVersionConfig

MigrateResourceRequest.MigrateMlEngineModelVersionConfig.Builder

Config for migrating version in ml.googleapis.com to Vertex AI's Model.

Protobuf type google.cloud.aiplatform.v1.MigrateResourceRequest.MigrateMlEngineModelVersionConfig

MigrateResourceResponse

Describes a successfully migrated resource.

Protobuf type google.cloud.aiplatform.v1.MigrateResourceResponse

MigrateResourceResponse.Builder

Describes a successfully migrated resource.

Protobuf type google.cloud.aiplatform.v1.MigrateResourceResponse

MigrationServiceClient

Service Description: A service that migrates resources from automl.googleapis.com, datalabeling.googleapis.com and ml.googleapis.com to Vertex AI.

This class provides the ability to make remote calls to the backing service through method calls that map to API methods. Sample code to get started:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 try (MigrationServiceClient migrationServiceClient = MigrationServiceClient.create()) {
   GetLocationRequest request = GetLocationRequest.newBuilder().setName("name3373707").build();
   Location response = migrationServiceClient.getLocation(request);
 }
 

Note: close() needs to be called on the MigrationServiceClient object to clean up resources such as threads. In the example above, try-with-resources is used, which automatically calls close().

The surface of this class includes several types of Java methods for each of the API's methods:

  1. A "flattened" method. With this type of method, the fields of the request type have been converted into function parameters. It may be the case that not all fields are available as parameters, and not every API method will have a flattened method entry point.
  2. A "request object" method. This type of method only takes one parameter, a request object, which must be constructed before the call. Not every API method will have a request object method.
  3. A "callable" method. This type of method takes no parameters and returns an immutable API callable object, which can be used to initiate calls to the service.

See the individual methods for example code.

Many parameters require resource names to be formatted in a particular way. To assist with these names, this class includes a format method for each type of name, and additionally a parse method to extract the individual identifiers contained within names that are returned.

This class can be customized by passing in a custom instance of MigrationServiceSettings to create(). For example:

To customize credentials:


 // This snippet has been automatically generated and should be regarded as a code template only.
 // It will require modifications to work:
 // - It may require correct/in-range values for request initialization.
 // - It may require specifying regional endpoints when creating the service client as shown in
 // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 MigrationServiceSettings migrationServiceSettings =
     MigrationServiceSettings.newBuilder()
         .setCredentialsProvider(FixedCredentialsProvider.create(myCredentials))
         .build();
 MigrationServiceClient migrationServiceClient =
     MigrationServiceClient.create(migrationServiceSettings);
 

To custom