- 3.56.0 (latest)
- 3.55.0
- 3.54.0
- 3.53.0
- 3.52.0
- 3.50.0
- 3.49.0
- 3.48.0
- 3.47.0
- 3.46.0
- 3.45.0
- 3.44.0
- 3.43.0
- 3.42.0
- 3.41.0
- 3.40.0
- 3.38.0
- 3.37.0
- 3.36.0
- 3.35.0
- 3.34.0
- 3.33.0
- 3.32.0
- 3.31.0
- 3.30.0
- 3.29.0
- 3.28.0
- 3.25.0
- 3.24.0
- 3.23.0
- 3.22.0
- 3.21.0
- 3.20.0
- 3.19.0
- 3.18.0
- 3.17.0
- 3.16.0
- 3.15.0
- 3.14.0
- 3.13.0
- 3.12.0
- 3.11.0
- 3.10.0
- 3.9.0
- 3.8.0
- 3.7.0
- 3.6.0
- 3.5.0
- 3.4.2
- 3.3.0
- 3.2.0
- 3.0.0
- 2.9.8
- 2.8.9
- 2.7.4
- 2.5.3
- 2.4.0
public static final class ModelEvaluation.BiasConfig.Builder extends GeneratedMessageV3.Builder<ModelEvaluation.BiasConfig.Builder> implements ModelEvaluation.BiasConfigOrBuilder
Configuration for bias detection.
Protobuf type google.cloud.aiplatform.v1beta1.ModelEvaluation.BiasConfig
Inheritance
Object > AbstractMessageLite.Builder<MessageType,BuilderType> > AbstractMessage.Builder<BuilderType> > GeneratedMessageV3.Builder > ModelEvaluation.BiasConfig.BuilderImplements
ModelEvaluation.BiasConfigOrBuilderStatic Methods
getDescriptor()
public static final Descriptors.Descriptor getDescriptor()
Returns | |
---|---|
Type | Description |
Descriptor |
Methods
addAllLabels(Iterable<String> values)
public ModelEvaluation.BiasConfig.Builder addAllLabels(Iterable<String> values)
Positive labels selection on the target field.
repeated string labels = 2;
Parameter | |
---|---|
Name | Description |
values | Iterable<String> The labels to add. |
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder | This builder for chaining. |
addLabels(String value)
public ModelEvaluation.BiasConfig.Builder addLabels(String value)
Positive labels selection on the target field.
repeated string labels = 2;
Parameter | |
---|---|
Name | Description |
value | String The labels to add. |
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder | This builder for chaining. |
addLabelsBytes(ByteString value)
public ModelEvaluation.BiasConfig.Builder addLabelsBytes(ByteString value)
Positive labels selection on the target field.
repeated string labels = 2;
Parameter | |
---|---|
Name | Description |
value | ByteString The bytes of the labels to add. |
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder | This builder for chaining. |
addRepeatedField(Descriptors.FieldDescriptor field, Object value)
public ModelEvaluation.BiasConfig.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
Parameters | |
---|---|
Name | Description |
field | FieldDescriptor |
value | Object |
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder |
build()
public ModelEvaluation.BiasConfig build()
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig |
buildPartial()
public ModelEvaluation.BiasConfig buildPartial()
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig |
clear()
public ModelEvaluation.BiasConfig.Builder clear()
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder |
clearBiasSlices()
public ModelEvaluation.BiasConfig.Builder clearBiasSlices()
Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against “not slice_a”. Below are examples with feature "education" with value "low", "medium", "high" in the dataset:
Example 1:
bias_slices = [{'education': 'low'}]
A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'.
Example 2:
bias_slices = [{'education': 'low'},
{'education': 'high'}]
Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
.google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder |
clearField(Descriptors.FieldDescriptor field)
public ModelEvaluation.BiasConfig.Builder clearField(Descriptors.FieldDescriptor field)
Parameter | |
---|---|
Name | Description |
field | FieldDescriptor |
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder |
clearLabels()
public ModelEvaluation.BiasConfig.Builder clearLabels()
Positive labels selection on the target field.
repeated string labels = 2;
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder | This builder for chaining. |
clearOneof(Descriptors.OneofDescriptor oneof)
public ModelEvaluation.BiasConfig.Builder clearOneof(Descriptors.OneofDescriptor oneof)
Parameter | |
---|---|
Name | Description |
oneof | OneofDescriptor |
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder |
clone()
public ModelEvaluation.BiasConfig.Builder clone()
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder |
getBiasSlices()
public ModelEvaluationSlice.Slice.SliceSpec getBiasSlices()
Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against “not slice_a”. Below are examples with feature "education" with value "low", "medium", "high" in the dataset:
Example 1:
bias_slices = [{'education': 'low'}]
A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'.
Example 2:
bias_slices = [{'education': 'low'},
{'education': 'high'}]
Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
.google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
Returns | |
---|---|
Type | Description |
ModelEvaluationSlice.Slice.SliceSpec | The biasSlices. |
getBiasSlicesBuilder()
public ModelEvaluationSlice.Slice.SliceSpec.Builder getBiasSlicesBuilder()
Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against “not slice_a”. Below are examples with feature "education" with value "low", "medium", "high" in the dataset:
Example 1:
bias_slices = [{'education': 'low'}]
A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'.
Example 2:
bias_slices = [{'education': 'low'},
{'education': 'high'}]
Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
.google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
Returns | |
---|---|
Type | Description |
ModelEvaluationSlice.Slice.SliceSpec.Builder |
getBiasSlicesOrBuilder()
public ModelEvaluationSlice.Slice.SliceSpecOrBuilder getBiasSlicesOrBuilder()
Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against “not slice_a”. Below are examples with feature "education" with value "low", "medium", "high" in the dataset:
Example 1:
bias_slices = [{'education': 'low'}]
A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'.
Example 2:
bias_slices = [{'education': 'low'},
{'education': 'high'}]
Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
.google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
Returns | |
---|---|
Type | Description |
ModelEvaluationSlice.Slice.SliceSpecOrBuilder |
getDefaultInstanceForType()
public ModelEvaluation.BiasConfig getDefaultInstanceForType()
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig |
getDescriptorForType()
public Descriptors.Descriptor getDescriptorForType()
Returns | |
---|---|
Type | Description |
Descriptor |
getLabels(int index)
public String getLabels(int index)
Positive labels selection on the target field.
repeated string labels = 2;
Parameter | |
---|---|
Name | Description |
index | int The index of the element to return. |
Returns | |
---|---|
Type | Description |
String | The labels at the given index. |
getLabelsBytes(int index)
public ByteString getLabelsBytes(int index)
Positive labels selection on the target field.
repeated string labels = 2;
Parameter | |
---|---|
Name | Description |
index | int The index of the value to return. |
Returns | |
---|---|
Type | Description |
ByteString | The bytes of the labels at the given index. |
getLabelsCount()
public int getLabelsCount()
Positive labels selection on the target field.
repeated string labels = 2;
Returns | |
---|---|
Type | Description |
int | The count of labels. |
getLabelsList()
public ProtocolStringList getLabelsList()
Positive labels selection on the target field.
repeated string labels = 2;
Returns | |
---|---|
Type | Description |
ProtocolStringList | A list containing the labels. |
hasBiasSlices()
public boolean hasBiasSlices()
Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against “not slice_a”. Below are examples with feature "education" with value "low", "medium", "high" in the dataset:
Example 1:
bias_slices = [{'education': 'low'}]
A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'.
Example 2:
bias_slices = [{'education': 'low'},
{'education': 'high'}]
Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
.google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
Returns | |
---|---|
Type | Description |
boolean | Whether the biasSlices field is set. |
internalGetFieldAccessorTable()
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns | |
---|---|
Type | Description |
FieldAccessorTable |
isInitialized()
public final boolean isInitialized()
Returns | |
---|---|
Type | Description |
boolean |
mergeBiasSlices(ModelEvaluationSlice.Slice.SliceSpec value)
public ModelEvaluation.BiasConfig.Builder mergeBiasSlices(ModelEvaluationSlice.Slice.SliceSpec value)
Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against “not slice_a”. Below are examples with feature "education" with value "low", "medium", "high" in the dataset:
Example 1:
bias_slices = [{'education': 'low'}]
A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'.
Example 2:
bias_slices = [{'education': 'low'},
{'education': 'high'}]
Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
.google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
Parameter | |
---|---|
Name | Description |
value | ModelEvaluationSlice.Slice.SliceSpec |
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder |
mergeFrom(ModelEvaluation.BiasConfig other)
public ModelEvaluation.BiasConfig.Builder mergeFrom(ModelEvaluation.BiasConfig other)
Parameter | |
---|---|
Name | Description |
other | ModelEvaluation.BiasConfig |
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder |
mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
public ModelEvaluation.BiasConfig.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters | |
---|---|
Name | Description |
input | CodedInputStream |
extensionRegistry | ExtensionRegistryLite |
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder |
Exceptions | |
---|---|
Type | Description |
IOException |
mergeFrom(Message other)
public ModelEvaluation.BiasConfig.Builder mergeFrom(Message other)
Parameter | |
---|---|
Name | Description |
other | Message |
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder |
mergeUnknownFields(UnknownFieldSet unknownFields)
public final ModelEvaluation.BiasConfig.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
Parameter | |
---|---|
Name | Description |
unknownFields | UnknownFieldSet |
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder |
setBiasSlices(ModelEvaluationSlice.Slice.SliceSpec value)
public ModelEvaluation.BiasConfig.Builder setBiasSlices(ModelEvaluationSlice.Slice.SliceSpec value)
Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against “not slice_a”. Below are examples with feature "education" with value "low", "medium", "high" in the dataset:
Example 1:
bias_slices = [{'education': 'low'}]
A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'.
Example 2:
bias_slices = [{'education': 'low'},
{'education': 'high'}]
Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
.google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
Parameter | |
---|---|
Name | Description |
value | ModelEvaluationSlice.Slice.SliceSpec |
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder |
setBiasSlices(ModelEvaluationSlice.Slice.SliceSpec.Builder builderForValue)
public ModelEvaluation.BiasConfig.Builder setBiasSlices(ModelEvaluationSlice.Slice.SliceSpec.Builder builderForValue)
Specification for how the data should be sliced for bias. It contains a list of slices, with limitation of two slices. The first slice of data will be the slice_a. The second slice in the list (slice_b) will be compared against the first slice. If only a single slice is provided, then slice_a will be compared against “not slice_a”. Below are examples with feature "education" with value "low", "medium", "high" in the dataset:
Example 1:
bias_slices = [{'education': 'low'}]
A single slice provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'medium' or 'high'.
Example 2:
bias_slices = [{'education': 'low'},
{'education': 'high'}]
Two slices provided. In this case, slice_a is the collection of data with 'education' equals 'low', and slice_b is the collection of data with 'education' equals 'high'.
.google.cloud.aiplatform.v1beta1.ModelEvaluationSlice.Slice.SliceSpec bias_slices = 1;
Parameter | |
---|---|
Name | Description |
builderForValue | ModelEvaluationSlice.Slice.SliceSpec.Builder |
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder |
setField(Descriptors.FieldDescriptor field, Object value)
public ModelEvaluation.BiasConfig.Builder setField(Descriptors.FieldDescriptor field, Object value)
Parameters | |
---|---|
Name | Description |
field | FieldDescriptor |
value | Object |
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder |
setLabels(int index, String value)
public ModelEvaluation.BiasConfig.Builder setLabels(int index, String value)
Positive labels selection on the target field.
repeated string labels = 2;
Parameters | |
---|---|
Name | Description |
index | int The index to set the value at. |
value | String The labels to set. |
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder | This builder for chaining. |
setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
public ModelEvaluation.BiasConfig.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
Parameters | |
---|---|
Name | Description |
field | FieldDescriptor |
index | int |
value | Object |
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder |
setUnknownFields(UnknownFieldSet unknownFields)
public final ModelEvaluation.BiasConfig.Builder setUnknownFields(UnknownFieldSet unknownFields)
Parameter | |
---|---|
Name | Description |
unknownFields | UnknownFieldSet |
Returns | |
---|---|
Type | Description |
ModelEvaluation.BiasConfig.Builder |