Classes
ActiveLearningConfig
Parameters that configure the active learning pipeline. Active learning will label the data incrementally by several iterations. For every iteration, it will select a batch of data based on the sampling strategy.
AddContextArtifactsAndExecutionsRequest
Request message for [MetadataService.AddContextArtifactsAndExecutions][google.cloud.aiplatform.v1beta1.MetadataService.AddContextArtifactsAndExecutions].
AddContextArtifactsAndExecutionsResponse
Response message for [MetadataService.AddContextArtifactsAndExecutions][google.cloud.aiplatform.v1beta1.MetadataService.AddContextArtifactsAndExecutions].
AddContextChildrenRequest
Request message for [MetadataService.AddContextChildren][google.cloud.aiplatform.v1beta1.MetadataService.AddContextChildren].
AddContextChildrenResponse
Response message for [MetadataService.AddContextChildren][google.cloud.aiplatform.v1beta1.MetadataService.AddContextChildren].
AddExecutionEventsRequest
Request message for [MetadataService.AddExecutionEvents][google.cloud.aiplatform.v1beta1.MetadataService.AddExecutionEvents].
AddExecutionEventsResponse
Response message for [MetadataService.AddExecutionEvents][google.cloud.aiplatform.v1beta1.MetadataService.AddExecutionEvents].
AddTrialMeasurementRequest
Request message for [VizierService.AddTrialMeasurement][google.cloud.aiplatform.v1beta1.VizierService.AddTrialMeasurement].
AnnotatedDatasetName
Resource name for the AnnotatedDataset
resource.
Annotation
Used to assign specific AnnotationSpec to a particular area of a DataItem or the whole part of the DataItem.
AnnotationName
Resource name for the Annotation
resource.
AnnotationSpec
Identifies a concept with which DataItems may be annotated with.
AnnotationSpecName
Resource name for the AnnotationSpec
resource.
ApiAuth
The generic reusable api auth config.
ApiAuth.Types
Container for nested types declared in the ApiAuth message type.
ApiAuth.Types.ApiKeyConfig
The API secret.
Artifact
Instance of a general artifact.
Artifact.Types
Container for nested types declared in the Artifact message type.
ArtifactName
Resource name for the Artifact
resource.
ArtifactTypeSchema
The definition of a artifact type in MLMD.
AssignNotebookRuntimeOperationMetadata
Metadata information for [NotebookService.AssignNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.AssignNotebookRuntime].
AssignNotebookRuntimeRequest
Request message for [NotebookService.AssignNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.AssignNotebookRuntime].
Attribution
Attribution that explains a particular prediction output.
AuthConfig
Auth configuration to run the extension.
AuthConfig.Types
Container for nested types declared in the AuthConfig message type.
AuthConfig.Types.ApiKeyConfig
Config for authentication with API key.
AuthConfig.Types.GoogleServiceAccountConfig
Config for Google Service Account Authentication.
AuthConfig.Types.HttpBasicAuthConfig
Config for HTTP Basic Authentication.
AuthConfig.Types.OauthConfig
Config for user oauth.
AuthConfig.Types.OidcConfig
Config for user OIDC auth.
AutoMLDatasetName
Resource name for the AutoMLDataset
resource.
AutoMLModelName
Resource name for the AutoMLModel
resource.
AutomaticResources
A description of resources that to large degree are decided by Vertex AI, and require only a modest additional configuration. Each Model supporting these resources documents its specific guidelines.
AutoscalingMetricSpec
The metric specification that defines the target resource utilization (CPU utilization, accelerator's duty cycle, and so on) for calculating the desired replica count.
AvroSource
The storage details for Avro input content.
BatchCancelPipelineJobsOperationMetadata
Runtime operation information for [PipelineService.BatchCancelPipelineJobs][google.cloud.aiplatform.v1beta1.PipelineService.BatchCancelPipelineJobs].
BatchCancelPipelineJobsRequest
Request message for [PipelineService.BatchCancelPipelineJobs][google.cloud.aiplatform.v1beta1.PipelineService.BatchCancelPipelineJobs].
BatchCancelPipelineJobsResponse
Response message for [PipelineService.BatchCancelPipelineJobs][google.cloud.aiplatform.v1beta1.PipelineService.BatchCancelPipelineJobs].
BatchCreateFeaturesOperationMetadata
Details of operations that perform batch create Features.
BatchCreateFeaturesRequest
Request message for [FeaturestoreService.BatchCreateFeatures][google.cloud.aiplatform.v1beta1.FeaturestoreService.BatchCreateFeatures].
BatchCreateFeaturesResponse
Response message for [FeaturestoreService.BatchCreateFeatures][google.cloud.aiplatform.v1beta1.FeaturestoreService.BatchCreateFeatures].
BatchCreateTensorboardRunsRequest
Request message for [TensorboardService.BatchCreateTensorboardRuns][google.cloud.aiplatform.v1beta1.TensorboardService.BatchCreateTensorboardRuns].
BatchCreateTensorboardRunsResponse
Response message for [TensorboardService.BatchCreateTensorboardRuns][google.cloud.aiplatform.v1beta1.TensorboardService.BatchCreateTensorboardRuns].
BatchCreateTensorboardTimeSeriesRequest
Request message for [TensorboardService.BatchCreateTensorboardTimeSeries][google.cloud.aiplatform.v1beta1.TensorboardService.BatchCreateTensorboardTimeSeries].
BatchCreateTensorboardTimeSeriesResponse
Response message for [TensorboardService.BatchCreateTensorboardTimeSeries][google.cloud.aiplatform.v1beta1.TensorboardService.BatchCreateTensorboardTimeSeries].
BatchDedicatedResources
A description of resources that are used for performing batch operations, are dedicated to a Model, and need manual configuration.
BatchDeletePipelineJobsRequest
Request message for [PipelineService.BatchDeletePipelineJobs][google.cloud.aiplatform.v1beta1.PipelineService.BatchDeletePipelineJobs].
BatchDeletePipelineJobsResponse
Response message for [PipelineService.BatchDeletePipelineJobs][google.cloud.aiplatform.v1beta1.PipelineService.BatchDeletePipelineJobs].
BatchImportEvaluatedAnnotationsRequest
Request message for [ModelService.BatchImportEvaluatedAnnotations][google.cloud.aiplatform.v1beta1.ModelService.BatchImportEvaluatedAnnotations]
BatchImportEvaluatedAnnotationsResponse
Response message for [ModelService.BatchImportEvaluatedAnnotations][google.cloud.aiplatform.v1beta1.ModelService.BatchImportEvaluatedAnnotations]
BatchImportModelEvaluationSlicesRequest
Request message for [ModelService.BatchImportModelEvaluationSlices][google.cloud.aiplatform.v1beta1.ModelService.BatchImportModelEvaluationSlices]
BatchImportModelEvaluationSlicesResponse
Response message for [ModelService.BatchImportModelEvaluationSlices][google.cloud.aiplatform.v1beta1.ModelService.BatchImportModelEvaluationSlices]
BatchMigrateResourcesOperationMetadata
Runtime operation information for [MigrationService.BatchMigrateResources][google.cloud.aiplatform.v1beta1.MigrationService.BatchMigrateResources].
BatchMigrateResourcesOperationMetadata.Types
Container for nested types declared in the BatchMigrateResourcesOperationMetadata message type.
BatchMigrateResourcesOperationMetadata.Types.PartialResult
Represents a partial result in batch migration operation for one [MigrateResourceRequest][google.cloud.aiplatform.v1beta1.MigrateResourceRequest].
BatchMigrateResourcesRequest
Request message for [MigrationService.BatchMigrateResources][google.cloud.aiplatform.v1beta1.MigrationService.BatchMigrateResources].
BatchMigrateResourcesResponse
Response message for [MigrationService.BatchMigrateResources][google.cloud.aiplatform.v1beta1.MigrationService.BatchMigrateResources].
BatchPredictionJob
A job that uses a [Model][google.cloud.aiplatform.v1beta1.BatchPredictionJob.model] to produce predictions on multiple [input instances][google.cloud.aiplatform.v1beta1.BatchPredictionJob.input_config]. If predictions for significant portion of the instances fail, the job may finish without attempting predictions for all remaining instances.
BatchPredictionJob.Types
Container for nested types declared in the BatchPredictionJob message type.
BatchPredictionJob.Types.InputConfig
Configures the input to [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. See [Model.supported_input_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_input_storage_formats] for Model's supported input formats, and how instances should be expressed via any of them.
BatchPredictionJob.Types.InstanceConfig
Configuration defining how to transform batch prediction input instances to the instances that the Model accepts.
BatchPredictionJob.Types.OutputConfig
Configures the output of [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob]. See [Model.supported_output_storage_formats][google.cloud.aiplatform.v1beta1.Model.supported_output_storage_formats] for supported output formats, and how predictions are expressed via any of them.
BatchPredictionJob.Types.OutputInfo
Further describes this job's output. Supplements [output_config][google.cloud.aiplatform.v1beta1.BatchPredictionJob.output_config].
BatchPredictionJobName
Resource name for the BatchPredictionJob
resource.
BatchReadFeatureValuesOperationMetadata
Details of operations that batch reads Feature values.
BatchReadFeatureValuesRequest
Request message for [FeaturestoreService.BatchReadFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreService.BatchReadFeatureValues].
BatchReadFeatureValuesRequest.Types
Container for nested types declared in the BatchReadFeatureValuesRequest message type.
BatchReadFeatureValuesRequest.Types.EntityTypeSpec
Selects Features of an EntityType to read values of and specifies read settings.
BatchReadFeatureValuesRequest.Types.PassThroughField
Describe pass-through fields in read_instance source.
BatchReadFeatureValuesResponse
Response message for [FeaturestoreService.BatchReadFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreService.BatchReadFeatureValues].
BatchReadTensorboardTimeSeriesDataRequest
Request message for [TensorboardService.BatchReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1beta1.TensorboardService.BatchReadTensorboardTimeSeriesData].
BatchReadTensorboardTimeSeriesDataResponse
Response message for [TensorboardService.BatchReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1beta1.TensorboardService.BatchReadTensorboardTimeSeriesData].
BigQueryDestination
The BigQuery location for the output content.
BigQuerySource
The BigQuery location for the input content.
BleuInput
Input for bleu metric.
BleuInstance
Spec for bleu instance.
BleuMetricValue
Bleu metric value for an instance.
BleuResults
Results for bleu metric.
BleuSpec
Spec for bleu score metric - calculates the precision of n-grams in the prediction as compared to reference - returns a score ranging between 0 to 1.
Blob
Content blob.
It's preferred to send as [text][google.cloud.aiplatform.v1beta1.Part.text] directly rather than raw bytes.
BlurBaselineConfig
Config for blur baseline.
When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
BoolArray
A list of boolean values.
CachedContent
A resource used in LLM queries for users to explicitly specify what to cache and how to cache.
CachedContent.Types
Container for nested types declared in the CachedContent message type.
CachedContent.Types.UsageMetadata
Metadata on the usage of the cached content.
CachedContentName
Resource name for the CachedContent
resource.
CancelBatchPredictionJobRequest
Request message for [JobService.CancelBatchPredictionJob][google.cloud.aiplatform.v1beta1.JobService.CancelBatchPredictionJob].
CancelCustomJobRequest
Request message for [JobService.CancelCustomJob][google.cloud.aiplatform.v1beta1.JobService.CancelCustomJob].
CancelDataLabelingJobRequest
Request message for [JobService.CancelDataLabelingJob][google.cloud.aiplatform.v1beta1.JobService.CancelDataLabelingJob].
CancelHyperparameterTuningJobRequest
Request message for [JobService.CancelHyperparameterTuningJob][google.cloud.aiplatform.v1beta1.JobService.CancelHyperparameterTuningJob].
CancelNasJobRequest
Request message for [JobService.CancelNasJob][google.cloud.aiplatform.v1beta1.JobService.CancelNasJob].
CancelPipelineJobRequest
Request message for [PipelineService.CancelPipelineJob][google.cloud.aiplatform.v1beta1.PipelineService.CancelPipelineJob].
CancelTrainingPipelineRequest
Request message for [PipelineService.CancelTrainingPipeline][google.cloud.aiplatform.v1beta1.PipelineService.CancelTrainingPipeline].
CancelTuningJobRequest
Request message for [GenAiTuningService.CancelTuningJob][google.cloud.aiplatform.v1beta1.GenAiTuningService.CancelTuningJob].
Candidate
A response candidate generated from the model.
Candidate.Types
Container for nested types declared in the Candidate message type.
ChatCompletionsRequest
Request message for [PredictionService.ChatCompletions]
CheckTrialEarlyStoppingStateMetatdata
This message will be placed in the metadata field of a google.longrunning.Operation associated with a CheckTrialEarlyStoppingState request.
CheckTrialEarlyStoppingStateRequest
Request message for [VizierService.CheckTrialEarlyStoppingState][google.cloud.aiplatform.v1beta1.VizierService.CheckTrialEarlyStoppingState].
CheckTrialEarlyStoppingStateResponse
Response message for [VizierService.CheckTrialEarlyStoppingState][google.cloud.aiplatform.v1beta1.VizierService.CheckTrialEarlyStoppingState].
Citation
Source attributions for content.
CitationMetadata
A collection of source attributions for a piece of content.
CoherenceInput
Input for coherence metric.
CoherenceInstance
Spec for coherence instance.
CoherenceResult
Spec for coherence result.
CoherenceSpec
Spec for coherence score metric.
CompleteTrialRequest
Request message for [VizierService.CompleteTrial][google.cloud.aiplatform.v1beta1.VizierService.CompleteTrial].
CompletionStats
Success and error statistics of processing multiple entities (for example, DataItems or structured data rows) in batch.
ComputeTokensRequest
Request message for ComputeTokens RPC call.
ComputeTokensResponse
Response message for ComputeTokens RPC call.
ContainerRegistryDestination
The Container Registry location for the container image.
ContainerSpec
The spec of a Container.
Content
The base structured datatype containing multi-part content of a message.
A Content
includes a role
field designating the producer of the Content
and a parts
field containing multi-part data that contains the content of
the message turn.
Context
Instance of a general context.
ContextName
Resource name for the Context
resource.
CopyModelOperationMetadata
Details of [ModelService.CopyModel][google.cloud.aiplatform.v1beta1.ModelService.CopyModel] operation.
CopyModelRequest
Request message for [ModelService.CopyModel][google.cloud.aiplatform.v1beta1.ModelService.CopyModel].
CopyModelResponse
Response message of [ModelService.CopyModel][google.cloud.aiplatform.v1beta1.ModelService.CopyModel] operation.
CorpusStatus
RagCorpus status.
CorpusStatus.Types
Container for nested types declared in the CorpusStatus message type.
CountTokensRequest
Request message for [PredictionService.CountTokens][google.cloud.aiplatform.v1beta1.PredictionService.CountTokens].
CountTokensResponse
Response message for [PredictionService.CountTokens][google.cloud.aiplatform.v1beta1.PredictionService.CountTokens].
CreateArtifactRequest
Request message for [MetadataService.CreateArtifact][google.cloud.aiplatform.v1beta1.MetadataService.CreateArtifact].
CreateBatchPredictionJobRequest
Request message for [JobService.CreateBatchPredictionJob][google.cloud.aiplatform.v1beta1.JobService.CreateBatchPredictionJob].
CreateCachedContentRequest
Request message for [GenAiCacheService.CreateCachedContent][google.cloud.aiplatform.v1beta1.GenAiCacheService.CreateCachedContent].
CreateContextRequest
Request message for [MetadataService.CreateContext][google.cloud.aiplatform.v1beta1.MetadataService.CreateContext].
CreateCustomJobRequest
Request message for [JobService.CreateCustomJob][google.cloud.aiplatform.v1beta1.JobService.CreateCustomJob].
CreateDataLabelingJobRequest
Request message for [JobService.CreateDataLabelingJob][google.cloud.aiplatform.v1beta1.JobService.CreateDataLabelingJob].
CreateDatasetOperationMetadata
Runtime operation information for [DatasetService.CreateDataset][google.cloud.aiplatform.v1beta1.DatasetService.CreateDataset].
CreateDatasetRequest
Request message for [DatasetService.CreateDataset][google.cloud.aiplatform.v1beta1.DatasetService.CreateDataset].
CreateDatasetVersionOperationMetadata
Runtime operation information for [DatasetService.CreateDatasetVersion][google.cloud.aiplatform.v1beta1.DatasetService.CreateDatasetVersion].
CreateDatasetVersionRequest
Request message for [DatasetService.CreateDatasetVersion][google.cloud.aiplatform.v1beta1.DatasetService.CreateDatasetVersion].
CreateDeploymentResourcePoolOperationMetadata
Runtime operation information for CreateDeploymentResourcePool method.
CreateDeploymentResourcePoolRequest
Request message for CreateDeploymentResourcePool method.
CreateEndpointOperationMetadata
Runtime operation information for [EndpointService.CreateEndpoint][google.cloud.aiplatform.v1beta1.EndpointService.CreateEndpoint].
CreateEndpointRequest
Request message for [EndpointService.CreateEndpoint][google.cloud.aiplatform.v1beta1.EndpointService.CreateEndpoint].
CreateEntityTypeOperationMetadata
Details of operations that perform create EntityType.
CreateEntityTypeRequest
Request message for [FeaturestoreService.CreateEntityType][google.cloud.aiplatform.v1beta1.FeaturestoreService.CreateEntityType].
CreateExecutionRequest
Request message for [MetadataService.CreateExecution][google.cloud.aiplatform.v1beta1.MetadataService.CreateExecution].
CreateFeatureGroupOperationMetadata
Details of operations that perform create FeatureGroup.
CreateFeatureGroupRequest
Request message for [FeatureRegistryService.CreateFeatureGroup][google.cloud.aiplatform.v1beta1.FeatureRegistryService.CreateFeatureGroup].
CreateFeatureOnlineStoreOperationMetadata
Details of operations that perform create FeatureOnlineStore.
CreateFeatureOnlineStoreRequest
Request message for [FeatureOnlineStoreAdminService.CreateFeatureOnlineStore][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.CreateFeatureOnlineStore].
CreateFeatureOperationMetadata
Details of operations that perform create Feature.
CreateFeatureRequest
Request message for [FeaturestoreService.CreateFeature][google.cloud.aiplatform.v1beta1.FeaturestoreService.CreateFeature]. Request message for [FeatureRegistryService.CreateFeature][google.cloud.aiplatform.v1beta1.FeatureRegistryService.CreateFeature].
CreateFeatureViewOperationMetadata
Details of operations that perform create FeatureView.
CreateFeatureViewRequest
Request message for [FeatureOnlineStoreAdminService.CreateFeatureView][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.CreateFeatureView].
CreateFeaturestoreOperationMetadata
Details of operations that perform create Featurestore.
CreateFeaturestoreRequest
Request message for [FeaturestoreService.CreateFeaturestore][google.cloud.aiplatform.v1beta1.FeaturestoreService.CreateFeaturestore].
CreateHyperparameterTuningJobRequest
Request message for [JobService.CreateHyperparameterTuningJob][google.cloud.aiplatform.v1beta1.JobService.CreateHyperparameterTuningJob].
CreateIndexEndpointOperationMetadata
Runtime operation information for [IndexEndpointService.CreateIndexEndpoint][google.cloud.aiplatform.v1beta1.IndexEndpointService.CreateIndexEndpoint].
CreateIndexEndpointRequest
Request message for [IndexEndpointService.CreateIndexEndpoint][google.cloud.aiplatform.v1beta1.IndexEndpointService.CreateIndexEndpoint].
CreateIndexOperationMetadata
Runtime operation information for [IndexService.CreateIndex][google.cloud.aiplatform.v1beta1.IndexService.CreateIndex].
CreateIndexRequest
Request message for [IndexService.CreateIndex][google.cloud.aiplatform.v1beta1.IndexService.CreateIndex].
CreateMetadataSchemaRequest
Request message for [MetadataService.CreateMetadataSchema][google.cloud.aiplatform.v1beta1.MetadataService.CreateMetadataSchema].
CreateMetadataStoreOperationMetadata
Details of operations that perform [MetadataService.CreateMetadataStore][google.cloud.aiplatform.v1beta1.MetadataService.CreateMetadataStore].
CreateMetadataStoreRequest
Request message for [MetadataService.CreateMetadataStore][google.cloud.aiplatform.v1beta1.MetadataService.CreateMetadataStore].
CreateModelDeploymentMonitoringJobRequest
Request message for [JobService.CreateModelDeploymentMonitoringJob][google.cloud.aiplatform.v1beta1.JobService.CreateModelDeploymentMonitoringJob].
CreateModelMonitorOperationMetadata
Runtime operation information for [ModelMonitoringService.CreateModelMonitor][google.cloud.aiplatform.v1beta1.ModelMonitoringService.CreateModelMonitor].
CreateModelMonitorRequest
Request message for [ModelMonitoringService.CreateModelMonitor][google.cloud.aiplatform.v1beta1.ModelMonitoringService.CreateModelMonitor].
CreateModelMonitoringJobRequest
Request message for [ModelMonitoringService.CreateModelMonitoringJob][google.cloud.aiplatform.v1beta1.ModelMonitoringService.CreateModelMonitoringJob].
CreateNasJobRequest
Request message for [JobService.CreateNasJob][google.cloud.aiplatform.v1beta1.JobService.CreateNasJob].
CreateNotebookExecutionJobOperationMetadata
Metadata information for [NotebookService.CreateNotebookExecutionJob][google.cloud.aiplatform.v1beta1.NotebookService.CreateNotebookExecutionJob].
CreateNotebookExecutionJobRequest
Request message for [NotebookService.CreateNotebookExecutionJob]
CreateNotebookRuntimeTemplateOperationMetadata
Metadata information for [NotebookService.CreateNotebookRuntimeTemplate][google.cloud.aiplatform.v1beta1.NotebookService.CreateNotebookRuntimeTemplate].
CreateNotebookRuntimeTemplateRequest
Request message for [NotebookService.CreateNotebookRuntimeTemplate][google.cloud.aiplatform.v1beta1.NotebookService.CreateNotebookRuntimeTemplate].
CreatePersistentResourceOperationMetadata
Details of operations that perform create PersistentResource.
CreatePersistentResourceRequest
Request message for [PersistentResourceService.CreatePersistentResource][google.cloud.aiplatform.v1beta1.PersistentResourceService.CreatePersistentResource].
CreatePipelineJobRequest
Request message for [PipelineService.CreatePipelineJob][google.cloud.aiplatform.v1beta1.PipelineService.CreatePipelineJob].
CreateRagCorpusOperationMetadata
Runtime operation information for [VertexRagDataService.CreateRagCorpus][google.cloud.aiplatform.v1beta1.VertexRagDataService.CreateRagCorpus].
CreateRagCorpusRequest
Request message for [VertexRagDataService.CreateRagCorpus][google.cloud.aiplatform.v1beta1.VertexRagDataService.CreateRagCorpus].
CreateReasoningEngineOperationMetadata
Details of [ReasoningEngineService.CreateReasoningEngine][google.cloud.aiplatform.v1beta1.ReasoningEngineService.CreateReasoningEngine] operation.
CreateReasoningEngineRequest
Request message for [ReasoningEngineService.CreateReasoningEngine][google.cloud.aiplatform.v1beta1.ReasoningEngineService.CreateReasoningEngine].
CreateRegistryFeatureOperationMetadata
Details of operations that perform create FeatureGroup.
CreateScheduleRequest
Request message for [ScheduleService.CreateSchedule][google.cloud.aiplatform.v1beta1.ScheduleService.CreateSchedule].
CreateSpecialistPoolOperationMetadata
Runtime operation information for [SpecialistPoolService.CreateSpecialistPool][google.cloud.aiplatform.v1beta1.SpecialistPoolService.CreateSpecialistPool].
CreateSpecialistPoolRequest
Request message for [SpecialistPoolService.CreateSpecialistPool][google.cloud.aiplatform.v1beta1.SpecialistPoolService.CreateSpecialistPool].
CreateStudyRequest
Request message for [VizierService.CreateStudy][google.cloud.aiplatform.v1beta1.VizierService.CreateStudy].
CreateTensorboardExperimentRequest
Request message for [TensorboardService.CreateTensorboardExperiment][google.cloud.aiplatform.v1beta1.TensorboardService.CreateTensorboardExperiment].
CreateTensorboardOperationMetadata
Details of operations that perform create Tensorboard.
CreateTensorboardRequest
Request message for [TensorboardService.CreateTensorboard][google.cloud.aiplatform.v1beta1.TensorboardService.CreateTensorboard].
CreateTensorboardRunRequest
Request message for [TensorboardService.CreateTensorboardRun][google.cloud.aiplatform.v1beta1.TensorboardService.CreateTensorboardRun].
CreateTensorboardTimeSeriesRequest
Request message for [TensorboardService.CreateTensorboardTimeSeries][google.cloud.aiplatform.v1beta1.TensorboardService.CreateTensorboardTimeSeries].
CreateTrainingPipelineRequest
Request message for [PipelineService.CreateTrainingPipeline][google.cloud.aiplatform.v1beta1.PipelineService.CreateTrainingPipeline].
CreateTrialRequest
Request message for [VizierService.CreateTrial][google.cloud.aiplatform.v1beta1.VizierService.CreateTrial].
CreateTuningJobRequest
Request message for [GenAiTuningService.CreateTuningJob][google.cloud.aiplatform.v1beta1.GenAiTuningService.CreateTuningJob].
CsvDestination
The storage details for CSV output content.
CsvSource
The storage details for CSV input content.
CustomJob
Represents a job that runs custom workloads such as a Docker container or a Python package. A CustomJob can have multiple worker pools and each worker pool can have its own machine and input spec. A CustomJob will be cleaned up once the job enters terminal state (failed or succeeded).
CustomJobName
Resource name for the CustomJob
resource.
CustomJobSpec
Represents the spec of a CustomJob.
DataItem
A piece of data in a Dataset. Could be an image, a video, a document or plain text.
DataItemName
Resource name for the DataItem
resource.
DataItemView
A container for a single DataItem and Annotations on it.
DataLabelingDatasetName
Resource name for the DataLabelingDataset
resource.
DataLabelingJob
DataLabelingJob is used to trigger a human labeling job on unlabeled data from the following Dataset:
DataLabelingJobName
Resource name for the DataLabelingJob
resource.
Dataset
A collection of DataItems and Annotations on them.
DatasetDistribution
Distribution computed over a tuning dataset.
DatasetDistribution.Types
Container for nested types declared in the DatasetDistribution message type.
DatasetDistribution.Types.DistributionBucket
Dataset bucket used to create a histogram for the distribution given a population of values.
DatasetName
Resource name for the Dataset
resource.
DatasetService
The service that manages Vertex AI Dataset and its child resources.
DatasetService.DatasetServiceBase
Base class for server-side implementations of DatasetService
DatasetService.DatasetServiceClient
Client for DatasetService
DatasetServiceClient
DatasetService client wrapper, for convenient use.
DatasetServiceClientBuilder
Builder class for DatasetServiceClient to provide simple configuration of credentials, endpoint etc.
DatasetServiceClientImpl
DatasetService client wrapper implementation, for convenient use.
DatasetServiceSettings
Settings for DatasetServiceClient instances.
DatasetStats
Statistics computed over a tuning dataset.
DatasetVersion
Describes the dataset version.
DatasetVersionName
Resource name for the DatasetVersion
resource.
DedicatedResources
A description of resources that are dedicated to a DeployedModel, and that need a higher degree of manual configuration.
DeleteArtifactRequest
Request message for [MetadataService.DeleteArtifact][google.cloud.aiplatform.v1beta1.MetadataService.DeleteArtifact].
DeleteBatchPredictionJobRequest
Request message for [JobService.DeleteBatchPredictionJob][google.cloud.aiplatform.v1beta1.JobService.DeleteBatchPredictionJob].
DeleteCachedContentRequest
Request message for [GenAiCacheService.DeleteCachedContent][google.cloud.aiplatform.v1beta1.GenAiCacheService.DeleteCachedContent].
DeleteContextRequest
Request message for [MetadataService.DeleteContext][google.cloud.aiplatform.v1beta1.MetadataService.DeleteContext].
DeleteCustomJobRequest
Request message for [JobService.DeleteCustomJob][google.cloud.aiplatform.v1beta1.JobService.DeleteCustomJob].
DeleteDataLabelingJobRequest
Request message for [JobService.DeleteDataLabelingJob][google.cloud.aiplatform.v1beta1.JobService.DeleteDataLabelingJob].
DeleteDatasetRequest
Request message for [DatasetService.DeleteDataset][google.cloud.aiplatform.v1beta1.DatasetService.DeleteDataset].
DeleteDatasetVersionRequest
Request message for [DatasetService.DeleteDatasetVersion][google.cloud.aiplatform.v1beta1.DatasetService.DeleteDatasetVersion].
DeleteDeploymentResourcePoolRequest
Request message for DeleteDeploymentResourcePool method.
DeleteEndpointRequest
Request message for [EndpointService.DeleteEndpoint][google.cloud.aiplatform.v1beta1.EndpointService.DeleteEndpoint].
DeleteEntityTypeRequest
Request message for [FeaturestoreService.DeleteEntityTypes][].
DeleteExecutionRequest
Request message for [MetadataService.DeleteExecution][google.cloud.aiplatform.v1beta1.MetadataService.DeleteExecution].
DeleteExtensionRequest
Request message for [ExtensionRegistryService.DeleteExtension][google.cloud.aiplatform.v1beta1.ExtensionRegistryService.DeleteExtension].
DeleteFeatureGroupRequest
Request message for [FeatureRegistryService.DeleteFeatureGroup][google.cloud.aiplatform.v1beta1.FeatureRegistryService.DeleteFeatureGroup].
DeleteFeatureOnlineStoreRequest
Request message for [FeatureOnlineStoreAdminService.DeleteFeatureOnlineStore][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.DeleteFeatureOnlineStore].
DeleteFeatureRequest
Request message for [FeaturestoreService.DeleteFeature][google.cloud.aiplatform.v1beta1.FeaturestoreService.DeleteFeature]. Request message for [FeatureRegistryService.DeleteFeature][google.cloud.aiplatform.v1beta1.FeatureRegistryService.DeleteFeature].
DeleteFeatureValuesOperationMetadata
Details of operations that delete Feature values.
DeleteFeatureValuesRequest
Request message for [FeaturestoreService.DeleteFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreService.DeleteFeatureValues].
DeleteFeatureValuesRequest.Types
Container for nested types declared in the DeleteFeatureValuesRequest message type.
DeleteFeatureValuesRequest.Types.SelectEntity
Message to select entity. If an entity id is selected, all the feature values corresponding to the entity id will be deleted, including the entityId.
DeleteFeatureValuesRequest.Types.SelectTimeRangeAndFeature
Message to select time range and feature. Values of the selected feature generated within an inclusive time range will be deleted. Using this option permanently deletes the feature values from the specified feature IDs within the specified time range. This might include data from the online storage. If you want to retain any deleted historical data in the online storage, you must re-ingest it.
DeleteFeatureValuesResponse
Response message for [FeaturestoreService.DeleteFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreService.DeleteFeatureValues].
DeleteFeatureValuesResponse.Types
Container for nested types declared in the DeleteFeatureValuesResponse message type.
DeleteFeatureValuesResponse.Types.SelectEntity
Response message if the request uses the SelectEntity option.
DeleteFeatureValuesResponse.Types.SelectTimeRangeAndFeature
Response message if the request uses the SelectTimeRangeAndFeature option.
DeleteFeatureViewRequest
Request message for [FeatureOnlineStoreAdminService.DeleteFeatureViews][].
DeleteFeaturestoreRequest
Request message for [FeaturestoreService.DeleteFeaturestore][google.cloud.aiplatform.v1beta1.FeaturestoreService.DeleteFeaturestore].
DeleteHyperparameterTuningJobRequest
Request message for [JobService.DeleteHyperparameterTuningJob][google.cloud.aiplatform.v1beta1.JobService.DeleteHyperparameterTuningJob].
DeleteIndexEndpointRequest
Request message for [IndexEndpointService.DeleteIndexEndpoint][google.cloud.aiplatform.v1beta1.IndexEndpointService.DeleteIndexEndpoint].
DeleteIndexRequest
Request message for [IndexService.DeleteIndex][google.cloud.aiplatform.v1beta1.IndexService.DeleteIndex].
DeleteMetadataStoreOperationMetadata
Details of operations that perform [MetadataService.DeleteMetadataStore][google.cloud.aiplatform.v1beta1.MetadataService.DeleteMetadataStore].
DeleteMetadataStoreRequest
Request message for [MetadataService.DeleteMetadataStore][google.cloud.aiplatform.v1beta1.MetadataService.DeleteMetadataStore].
DeleteModelDeploymentMonitoringJobRequest
Request message for [JobService.DeleteModelDeploymentMonitoringJob][google.cloud.aiplatform.v1beta1.JobService.DeleteModelDeploymentMonitoringJob].
DeleteModelMonitorRequest
Request message for [ModelMonitoringService.DeleteModelMonitor][google.cloud.aiplatform.v1beta1.ModelMonitoringService.DeleteModelMonitor].
DeleteModelMonitoringJobRequest
Request message for [ModelMonitoringService.DeleteModelMonitoringJob][google.cloud.aiplatform.v1beta1.ModelMonitoringService.DeleteModelMonitoringJob].
DeleteModelRequest
Request message for [ModelService.DeleteModel][google.cloud.aiplatform.v1beta1.ModelService.DeleteModel].
DeleteModelVersionRequest
Request message for [ModelService.DeleteModelVersion][google.cloud.aiplatform.v1beta1.ModelService.DeleteModelVersion].
DeleteNasJobRequest
Request message for [JobService.DeleteNasJob][google.cloud.aiplatform.v1beta1.JobService.DeleteNasJob].
DeleteNotebookExecutionJobRequest
Request message for [NotebookService.DeleteNotebookExecutionJob]
DeleteNotebookRuntimeRequest
Request message for [NotebookService.DeleteNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.DeleteNotebookRuntime].
DeleteNotebookRuntimeTemplateRequest
Request message for [NotebookService.DeleteNotebookRuntimeTemplate][google.cloud.aiplatform.v1beta1.NotebookService.DeleteNotebookRuntimeTemplate].
DeleteOperationMetadata
Details of operations that perform deletes of any entities.
DeletePersistentResourceRequest
Request message for [PersistentResourceService.DeletePersistentResource][google.cloud.aiplatform.v1beta1.PersistentResourceService.DeletePersistentResource].
DeletePipelineJobRequest
Request message for [PipelineService.DeletePipelineJob][google.cloud.aiplatform.v1beta1.PipelineService.DeletePipelineJob].
DeleteRagCorpusRequest
Request message for [VertexRagDataService.DeleteRagCorpus][google.cloud.aiplatform.v1beta1.VertexRagDataService.DeleteRagCorpus].
DeleteRagFileRequest
Request message for [VertexRagDataService.DeleteRagFile][google.cloud.aiplatform.v1beta1.VertexRagDataService.DeleteRagFile].
DeleteReasoningEngineRequest
Request message for [ReasoningEngineService.DeleteReasoningEngine][google.cloud.aiplatform.v1beta1.ReasoningEngineService.DeleteReasoningEngine].
DeleteSavedQueryRequest
Request message for [DatasetService.DeleteSavedQuery][google.cloud.aiplatform.v1beta1.DatasetService.DeleteSavedQuery].
DeleteScheduleRequest
Request message for [ScheduleService.DeleteSchedule][google.cloud.aiplatform.v1beta1.ScheduleService.DeleteSchedule].
DeleteSpecialistPoolRequest
Request message for [SpecialistPoolService.DeleteSpecialistPool][google.cloud.aiplatform.v1beta1.SpecialistPoolService.DeleteSpecialistPool].
DeleteStudyRequest
Request message for [VizierService.DeleteStudy][google.cloud.aiplatform.v1beta1.VizierService.DeleteStudy].
DeleteTensorboardExperimentRequest
Request message for [TensorboardService.DeleteTensorboardExperiment][google.cloud.aiplatform.v1beta1.TensorboardService.DeleteTensorboardExperiment].
DeleteTensorboardRequest
Request message for [TensorboardService.DeleteTensorboard][google.cloud.aiplatform.v1beta1.TensorboardService.DeleteTensorboard].
DeleteTensorboardRunRequest
Request message for [TensorboardService.DeleteTensorboardRun][google.cloud.aiplatform.v1beta1.TensorboardService.DeleteTensorboardRun].
DeleteTensorboardTimeSeriesRequest
Request message for [TensorboardService.DeleteTensorboardTimeSeries][google.cloud.aiplatform.v1beta1.TensorboardService.DeleteTensorboardTimeSeries].
DeleteTrainingPipelineRequest
Request message for [PipelineService.DeleteTrainingPipeline][google.cloud.aiplatform.v1beta1.PipelineService.DeleteTrainingPipeline].
DeleteTrialRequest
Request message for [VizierService.DeleteTrial][google.cloud.aiplatform.v1beta1.VizierService.DeleteTrial].
DeployIndexOperationMetadata
Runtime operation information for [IndexEndpointService.DeployIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.DeployIndex].
DeployIndexRequest
Request message for [IndexEndpointService.DeployIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.DeployIndex].
DeployIndexResponse
Response message for [IndexEndpointService.DeployIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.DeployIndex].
DeployModelOperationMetadata
Runtime operation information for [EndpointService.DeployModel][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel].
DeployModelRequest
Request message for [EndpointService.DeployModel][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel].
DeployModelResponse
Response message for [EndpointService.DeployModel][google.cloud.aiplatform.v1beta1.EndpointService.DeployModel].
DeployedIndex
A deployment of an Index. IndexEndpoints contain one or more DeployedIndexes.
DeployedIndexAuthConfig
Used to set up the auth on the DeployedIndex's private endpoint.
DeployedIndexAuthConfig.Types
Container for nested types declared in the DeployedIndexAuthConfig message type.
DeployedIndexAuthConfig.Types.AuthProvider
Configuration for an authentication provider, including support for JSON Web Token (JWT).
DeployedIndexRef
Points to a DeployedIndex.
DeployedModel
A deployment of a Model. Endpoints contain one or more DeployedModels.
DeployedModelRef
Points to a DeployedModel.
DeploymentResourcePool
A description of resources that can be shared by multiple DeployedModels, whose underlying specification consists of a DedicatedResources.
DeploymentResourcePoolName
Resource name for the DeploymentResourcePool
resource.
DeploymentResourcePoolService
A service that manages the DeploymentResourcePool resource.
DeploymentResourcePoolService.DeploymentResourcePoolServiceBase
Base class for server-side implementations of DeploymentResourcePoolService
DeploymentResourcePoolService.DeploymentResourcePoolServiceClient
Client for DeploymentResourcePoolService
DeploymentResourcePoolServiceClient
DeploymentResourcePoolService client wrapper, for convenient use.
DeploymentResourcePoolServiceClientBuilder
Builder class for DeploymentResourcePoolServiceClient to provide simple configuration of credentials, endpoint etc.
DeploymentResourcePoolServiceClientImpl
DeploymentResourcePoolService client wrapper implementation, for convenient use.
DeploymentResourcePoolServiceSettings
Settings for DeploymentResourcePoolServiceClient instances.
DestinationFeatureSetting
DirectPredictRequest
Request message for [PredictionService.DirectPredict][google.cloud.aiplatform.v1beta1.PredictionService.DirectPredict].
DirectPredictResponse
Response message for [PredictionService.DirectPredict][google.cloud.aiplatform.v1beta1.PredictionService.DirectPredict].
DirectRawPredictRequest
Request message for [PredictionService.DirectRawPredict][google.cloud.aiplatform.v1beta1.PredictionService.DirectRawPredict].
DirectRawPredictResponse
Response message for [PredictionService.DirectRawPredict][google.cloud.aiplatform.v1beta1.PredictionService.DirectRawPredict].
DirectUploadSource
The input content is encapsulated and uploaded in the request.
DiskSpec
Represents the spec of disk options.
DistillationDataStats
Statistics computed for datasets used for distillation.
DistillationHyperParameters
Hyperparameters for Distillation.
DistillationSpec
Tuning Spec for Distillation.
DoubleArray
A list of double values.
DynamicRetrievalConfig
Describes the options to customize dynamic retrieval.
DynamicRetrievalConfig.Types
Container for nested types declared in the DynamicRetrievalConfig message type.
EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top-level resource.
Endpoint
Models are deployed into it, and afterwards Endpoint is called to obtain predictions and explanations.
EndpointName
Resource name for the Endpoint
resource.
EndpointService
A service for managing Vertex AI's Endpoints.
EndpointService.EndpointServiceBase
Base class for server-side implementations of EndpointService
EndpointService.EndpointServiceClient
Client for EndpointService
EndpointServiceClient
EndpointService client wrapper, for convenient use.
EndpointServiceClientBuilder
Builder class for EndpointServiceClient to provide simple configuration of credentials, endpoint etc.
EndpointServiceClientImpl
EndpointService client wrapper implementation, for convenient use.
EndpointServiceSettings
Settings for EndpointServiceClient instances.
EntityIdSelector
Selector for entityId. Getting ids from the given source.
EntityType
An entity type is a type of object in a system that needs to be modeled and have stored information about. For example, driver is an entity type, and driver0 is an instance of an entity type driver.
EntityTypeName
Resource name for the EntityType
resource.
EnvVar
Represents an environment variable present in a Container or Python Module.
ErrorAnalysisAnnotation
Model error analysis for each annotation.
ErrorAnalysisAnnotation.Types
Container for nested types declared in the ErrorAnalysisAnnotation message type.
ErrorAnalysisAnnotation.Types.AttributedItem
Attributed items for a given annotation, typically representing neighbors from the training sets constrained by the query type.
EvaluateInstancesRequest
Request message for EvaluationService.EvaluateInstances.
EvaluateInstancesResponse
Response message for EvaluationService.EvaluateInstances.
EvaluatedAnnotation
True positive, false positive, or false negative.
EvaluatedAnnotation is only available under ModelEvaluationSlice with slice
of annotationSpec
dimension.
EvaluatedAnnotation.Types
Container for nested types declared in the EvaluatedAnnotation message type.
EvaluatedAnnotationExplanation
Explanation result of the prediction produced by the Model.
EvaluationService
Vertex AI Online Evaluation Service.
EvaluationService.EvaluationServiceBase
Base class for server-side implementations of EvaluationService
EvaluationService.EvaluationServiceClient
Client for EvaluationService
EvaluationServiceClient
EvaluationService client wrapper, for convenient use.
EvaluationServiceClientBuilder
Builder class for EvaluationServiceClient to provide simple configuration of credentials, endpoint etc.
EvaluationServiceClientImpl
EvaluationService client wrapper implementation, for convenient use.
EvaluationServiceSettings
Settings for EvaluationServiceClient instances.
Event
An edge describing the relationship between an Artifact and an Execution in a lineage graph.
Event.Types
Container for nested types declared in the Event message type.
ExactMatchInput
Input for exact match metric.
ExactMatchInstance
Spec for exact match instance.
ExactMatchMetricValue
Exact match metric value for an instance.
ExactMatchResults
Results for exact match metric.
ExactMatchSpec
Spec for exact match metric - returns 1 if prediction and reference exactly matches, otherwise 0.
Examples
Example-based explainability that returns the nearest neighbors from the provided dataset.
Examples.Types
Container for nested types declared in the Examples message type.
Examples.Types.ExampleGcsSource
The Cloud Storage input instances.
Examples.Types.ExampleGcsSource.Types
Container for nested types declared in the ExampleGcsSource message type.
ExamplesOverride
Overrides for example-based explanations.
ExamplesOverride.Types
Container for nested types declared in the ExamplesOverride message type.
ExamplesRestrictionsNamespace
Restrictions namespace for example-based explanations overrides.
ExecuteExtensionRequest
Request message for [ExtensionExecutionService.ExecuteExtension][google.cloud.aiplatform.v1beta1.ExtensionExecutionService.ExecuteExtension].
ExecuteExtensionResponse
Response message for [ExtensionExecutionService.ExecuteExtension][google.cloud.aiplatform.v1beta1.ExtensionExecutionService.ExecuteExtension].
Execution
Instance of a general execution.
Execution.Types
Container for nested types declared in the Execution message type.
ExecutionName
Resource name for the Execution
resource.
ExplainRequest
Request message for [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
ExplainResponse
Response message for [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain].
ExplainResponse.Types
Container for nested types declared in the ExplainResponse message type.
ExplainResponse.Types.ConcurrentExplanation
This message is a wrapper grouping Concurrent Explanations.
Explanation
Explanation of a prediction (provided in [PredictResponse.predictions][google.cloud.aiplatform.v1beta1.PredictResponse.predictions]) produced by the Model on a given [instance][google.cloud.aiplatform.v1beta1.ExplainRequest.instances].
ExplanationMetadata
Metadata describing the Model's input and output for explanation.
ExplanationMetadata.Types
Container for nested types declared in the ExplanationMetadata message type.
ExplanationMetadata.Types.InputMetadata
Metadata of the input of a feature.
Fields other than [InputMetadata.input_baselines][google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata.input_baselines] are applicable only for Models that are using Vertex AI-provided images for Tensorflow.
ExplanationMetadata.Types.InputMetadata.Types
Container for nested types declared in the InputMetadata message type.
ExplanationMetadata.Types.InputMetadata.Types.FeatureValueDomain
Domain details of the input feature value. Provides numeric information about the feature, such as its range (min, max). If the feature has been pre-processed, for example with z-scoring, then it provides information about how to recover the original feature. For example, if the input feature is an image and it has been pre-processed to obtain 0-mean and stddev = 1 values, then original_mean, and original_stddev refer to the mean and stddev of the original feature (e.g. image tensor) from which input feature (with mean = 0 and stddev = 1) was obtained.
ExplanationMetadata.Types.InputMetadata.Types.Visualization
Visualization configurations for image explanation.
ExplanationMetadata.Types.InputMetadata.Types.Visualization.Types
Container for nested types declared in the Visualization message type.
ExplanationMetadata.Types.OutputMetadata
Metadata of the prediction output to be explained.
ExplanationMetadataOverride
The [ExplanationMetadata][google.cloud.aiplatform.v1beta1.ExplanationMetadata] entries that can be overridden at [online explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] time.
ExplanationMetadataOverride.Types
Container for nested types declared in the ExplanationMetadataOverride message type.
ExplanationMetadataOverride.Types.InputMetadataOverride
The [input metadata][google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata] entries to be overridden.
ExplanationParameters
Parameters to configure explaining for Model's predictions.
ExplanationSpec
Specification of Model explanation.
ExplanationSpecOverride
The [ExplanationSpec][google.cloud.aiplatform.v1beta1.ExplanationSpec] entries that can be overridden at [online explanation][google.cloud.aiplatform.v1beta1.PredictionService.Explain] time.
ExportDataConfig
Describes what part of the Dataset is to be exported, the destination of the export and how to export.
ExportDataOperationMetadata
Runtime operation information for [DatasetService.ExportData][google.cloud.aiplatform.v1beta1.DatasetService.ExportData].
ExportDataRequest
Request message for [DatasetService.ExportData][google.cloud.aiplatform.v1beta1.DatasetService.ExportData].
ExportDataResponse
Response message for [DatasetService.ExportData][google.cloud.aiplatform.v1beta1.DatasetService.ExportData].
ExportFeatureValuesOperationMetadata
Details of operations that exports Features values.
ExportFeatureValuesRequest
Request message for [FeaturestoreService.ExportFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreService.ExportFeatureValues].
ExportFeatureValuesRequest.Types
Container for nested types declared in the ExportFeatureValuesRequest message type.
ExportFeatureValuesRequest.Types.FullExport
Describes exporting all historical Feature values of all entities of the EntityType between [start_time, end_time].
ExportFeatureValuesRequest.Types.SnapshotExport
Describes exporting the latest Feature values of all entities of the EntityType between [start_time, snapshot_time].
ExportFeatureValuesResponse
Response message for [FeaturestoreService.ExportFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreService.ExportFeatureValues].
ExportFractionSplit
Assigns the input data to training, validation, and test sets as per the
given fractions. Any of training_fraction
, validation_fraction
and
test_fraction
may optionally be provided, they must sum to up to 1. If the
provided ones sum to less than 1, the remainder is assigned to sets as
decided by Vertex AI. If none of the fractions are set, by default roughly
80% of data is used for training, 10% for validation, and 10% for test.
ExportModelOperationMetadata
Details of [ModelService.ExportModel][google.cloud.aiplatform.v1beta1.ModelService.ExportModel] operation.
ExportModelOperationMetadata.Types
Container for nested types declared in the ExportModelOperationMetadata message type.
ExportModelOperationMetadata.Types.OutputInfo
Further describes the output of the ExportModel. Supplements [ExportModelRequest.OutputConfig][google.cloud.aiplatform.v1beta1.ExportModelRequest.OutputConfig].
ExportModelRequest
Request message for [ModelService.ExportModel][google.cloud.aiplatform.v1beta1.ModelService.ExportModel].
ExportModelRequest.Types
Container for nested types declared in the ExportModelRequest message type.
ExportModelRequest.Types.OutputConfig
Output configuration for the Model export.
ExportModelResponse
Response message of [ModelService.ExportModel][google.cloud.aiplatform.v1beta1.ModelService.ExportModel] operation.
ExportTensorboardTimeSeriesDataRequest
Request message for [TensorboardService.ExportTensorboardTimeSeriesData][google.cloud.aiplatform.v1beta1.TensorboardService.ExportTensorboardTimeSeriesData].
ExportTensorboardTimeSeriesDataResponse
Response message for [TensorboardService.ExportTensorboardTimeSeriesData][google.cloud.aiplatform.v1beta1.TensorboardService.ExportTensorboardTimeSeriesData].
Extension
Extensions are tools for large language models to access external data, run computations, etc.
ExtensionExecutionService
A service for Extension execution.
ExtensionExecutionService.ExtensionExecutionServiceBase
Base class for server-side implementations of ExtensionExecutionService
ExtensionExecutionService.ExtensionExecutionServiceClient
Client for ExtensionExecutionService
ExtensionExecutionServiceClient
ExtensionExecutionService client wrapper, for convenient use.
ExtensionExecutionServiceClientBuilder
Builder class for ExtensionExecutionServiceClient to provide simple configuration of credentials, endpoint etc.
ExtensionExecutionServiceClientImpl
ExtensionExecutionService client wrapper implementation, for convenient use.
ExtensionExecutionServiceSettings
Settings for ExtensionExecutionServiceClient instances.
ExtensionManifest
Manifest spec of an Extension needed for runtime execution.
ExtensionManifest.Types
Container for nested types declared in the ExtensionManifest message type.
ExtensionManifest.Types.ApiSpec
The API specification shown to the LLM.
ExtensionName
Resource name for the Extension
resource.
ExtensionOperation
Operation of an extension.
ExtensionPrivateServiceConnectConfig
PrivateExtensionConfig configuration for the extension.
ExtensionRegistryService
A service for managing Vertex AI's Extension registry.
ExtensionRegistryService.ExtensionRegistryServiceBase
Base class for server-side implementations of ExtensionRegistryService
ExtensionRegistryService.ExtensionRegistryServiceClient
Client for ExtensionRegistryService
ExtensionRegistryServiceClient
ExtensionRegistryService client wrapper, for convenient use.
ExtensionRegistryServiceClientBuilder
Builder class for ExtensionRegistryServiceClient to provide simple configuration of credentials, endpoint etc.
ExtensionRegistryServiceClientImpl
ExtensionRegistryService client wrapper implementation, for convenient use.
ExtensionRegistryServiceSettings
Settings for ExtensionRegistryServiceClient instances.
Feature
Feature Metadata information. For example, color is a feature that describes an apple.
Feature.Types
Container for nested types declared in the Feature message type.
Feature.Types.MonitoringStatsAnomaly
A list of historical [SnapshotAnalysis][google.cloud.aiplatform.v1beta1.FeaturestoreMonitoringConfig.SnapshotAnalysis] or [ImportFeaturesAnalysis][google.cloud.aiplatform.v1beta1.FeaturestoreMonitoringConfig.ImportFeaturesAnalysis] stats requested by user, sorted by [FeatureStatsAnomaly.start_time][google.cloud.aiplatform.v1beta1.FeatureStatsAnomaly.start_time] descending.
Feature.Types.MonitoringStatsAnomaly.Types
Container for nested types declared in the MonitoringStatsAnomaly message type.
FeatureGroup
Vertex AI Feature Group.
FeatureGroup.Types
Container for nested types declared in the FeatureGroup message type.
FeatureGroup.Types.BigQuery
Input source type for BigQuery Tables and Views.
FeatureGroup.Types.BigQuery.Types
Container for nested types declared in the BigQuery message type.
FeatureGroup.Types.BigQuery.Types.TimeSeries
FeatureGroupName
Resource name for the FeatureGroup
resource.
FeatureName
Resource name for the Feature
resource.
FeatureNoiseSigma
Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients.
FeatureNoiseSigma.Types
Container for nested types declared in the FeatureNoiseSigma message type.
FeatureNoiseSigma.Types.NoiseSigmaForFeature
Noise sigma for a single feature.
FeatureOnlineStore
Vertex AI Feature Online Store provides a centralized repository for serving ML features and embedding indexes at low latency. The Feature Online Store is a top-level container.
FeatureOnlineStore.Types
Container for nested types declared in the FeatureOnlineStore message type.
FeatureOnlineStore.Types.Bigtable
FeatureOnlineStore.Types.Bigtable.Types
Container for nested types declared in the Bigtable message type.
FeatureOnlineStore.Types.Bigtable.Types.AutoScaling
FeatureOnlineStore.Types.DedicatedServingEndpoint
The dedicated serving endpoint for this FeatureOnlineStore. Only need to set when you choose Optimized storage type. Public endpoint is provisioned by default.
FeatureOnlineStore.Types.EmbeddingManagement
Deprecated: This sub message is no longer needed anymore and embedding management is automatically enabled when specifying Optimized storage type. Contains settings for embedding management.
FeatureOnlineStore.Types.Optimized
Optimized storage type
FeatureOnlineStoreAdminService
The service that handles CRUD and List for resources for FeatureOnlineStore.
FeatureOnlineStoreAdminService.FeatureOnlineStoreAdminServiceBase
Base class for server-side implementations of FeatureOnlineStoreAdminService
FeatureOnlineStoreAdminService.FeatureOnlineStoreAdminServiceClient
Client for FeatureOnlineStoreAdminService
FeatureOnlineStoreAdminServiceClient
FeatureOnlineStoreAdminService client wrapper, for convenient use.
FeatureOnlineStoreAdminServiceClientBuilder
Builder class for FeatureOnlineStoreAdminServiceClient to provide simple configuration of credentials, endpoint etc.
FeatureOnlineStoreAdminServiceClientImpl
FeatureOnlineStoreAdminService client wrapper implementation, for convenient use.
FeatureOnlineStoreAdminServiceSettings
Settings for FeatureOnlineStoreAdminServiceClient instances.
FeatureOnlineStoreName
Resource name for the FeatureOnlineStore
resource.
FeatureOnlineStoreService
A service for fetching feature values from the online store.
FeatureOnlineStoreService.FeatureOnlineStoreServiceBase
Base class for server-side implementations of FeatureOnlineStoreService
FeatureOnlineStoreService.FeatureOnlineStoreServiceClient
Client for FeatureOnlineStoreService
FeatureOnlineStoreServiceClient
FeatureOnlineStoreService client wrapper, for convenient use.
FeatureOnlineStoreServiceClient.StreamingFetchFeatureValuesStream
Bidirectional streaming methods for StreamingFetchFeatureValues(CallSettings, BidirectionalStreamingSettings).
FeatureOnlineStoreServiceClientBuilder
Builder class for FeatureOnlineStoreServiceClient to provide simple configuration of credentials, endpoint etc.
FeatureOnlineStoreServiceClientImpl
FeatureOnlineStoreService client wrapper implementation, for convenient use.
FeatureOnlineStoreServiceSettings
Settings for FeatureOnlineStoreServiceClient instances.
FeatureRegistryService
The service that handles CRUD and List for resources for FeatureRegistry.
FeatureRegistryService.FeatureRegistryServiceBase
Base class for server-side implementations of FeatureRegistryService
FeatureRegistryService.FeatureRegistryServiceClient
Client for FeatureRegistryService
FeatureRegistryServiceClient
FeatureRegistryService client wrapper, for convenient use.
FeatureRegistryServiceClientBuilder
Builder class for FeatureRegistryServiceClient to provide simple configuration of credentials, endpoint etc.
FeatureRegistryServiceClientImpl
FeatureRegistryService client wrapper implementation, for convenient use.
FeatureRegistryServiceSettings
Settings for FeatureRegistryServiceClient instances.
FeatureSelector
Selector for Features of an EntityType.
FeatureStatsAnomaly
Stats and Anomaly generated at specific timestamp for specific Feature. The start_time and end_time are used to define the time range of the dataset that current stats belongs to, e.g. prediction traffic is bucketed into prediction datasets by time window. If the Dataset is not defined by time window, start_time = end_time. Timestamp of the stats and anomalies always refers to end_time. Raw stats and anomalies are stored in stats_uri or anomaly_uri in the tensorflow defined protos. Field data_stats contains almost identical information with the raw stats in Vertex AI defined proto, for UI to display.
FeatureValue
Value for a feature.
FeatureValue.Types
Container for nested types declared in the FeatureValue message type.
FeatureValue.Types.Metadata
Metadata of feature value.
FeatureValueDestination
A destination location for Feature values and format.
FeatureValueList
Container for list of values.
FeatureView
FeatureView is representation of values that the FeatureOnlineStore will serve based on its syncConfig.
FeatureView.Types
Container for nested types declared in the FeatureView message type.
FeatureView.Types.BigQuerySource
FeatureView.Types.FeatureRegistrySource
A Feature Registry source for features that need to be synced to Online Store.
FeatureView.Types.FeatureRegistrySource.Types
Container for nested types declared in the FeatureRegistrySource message type.
FeatureView.Types.FeatureRegistrySource.Types.FeatureGroup
Features belonging to a single feature group that will be synced to Online Store.
FeatureView.Types.IndexConfig
Configuration for vector indexing.
FeatureView.Types.IndexConfig.Types
Container for nested types declared in the IndexConfig message type.
FeatureView.Types.IndexConfig.Types.BruteForceConfig
Configuration options for using brute force search.
FeatureView.Types.IndexConfig.Types.TreeAHConfig
Configuration options for the tree-AH algorithm.
FeatureView.Types.SyncConfig
Configuration for Sync. Only one option is set.
FeatureView.Types.VectorSearchConfig
Deprecated. Use [IndexConfig][google.cloud.aiplatform.v1beta1.FeatureView.IndexConfig] instead.
FeatureView.Types.VectorSearchConfig.Types
Container for nested types declared in the VectorSearchConfig message type.
FeatureView.Types.VectorSearchConfig.Types.BruteForceConfig
FeatureView.Types.VectorSearchConfig.Types.TreeAHConfig
FeatureView.Types.VertexRagSource
A Vertex Rag source for features that need to be synced to Online Store.
FeatureViewDataKey
Lookup key for a feature view.
FeatureViewDataKey.Types
Container for nested types declared in the FeatureViewDataKey message type.
FeatureViewDataKey.Types.CompositeKey
ID that is comprised from several parts (columns).
FeatureViewName
Resource name for the FeatureView
resource.
FeatureViewSync
FeatureViewSync is a representation of sync operation which copies data from data source to Feature View in Online Store.
FeatureViewSync.Types
Container for nested types declared in the FeatureViewSync message type.
FeatureViewSync.Types.SyncSummary
Summary from the Sync job. For continuous syncs, the summary is updated periodically. For batch syncs, it gets updated on completion of the sync.
FeatureViewSyncName
Resource name for the FeatureViewSync
resource.
Featurestore
Vertex AI Feature Store provides a centralized repository for organizing, storing, and serving ML features. The Featurestore is a top-level container for your features and their values.
Featurestore.Types
Container for nested types declared in the Featurestore message type.
Featurestore.Types.OnlineServingConfig
OnlineServingConfig specifies the details for provisioning online serving resources.
Featurestore.Types.OnlineServingConfig.Types
Container for nested types declared in the OnlineServingConfig message type.
Featurestore.Types.OnlineServingConfig.Types.Scaling
Online serving scaling configuration. If min_node_count and max_node_count are set to the same value, the cluster will be configured with the fixed number of node (no auto-scaling).
FeaturestoreMonitoringConfig
Configuration of how features in Featurestore are monitored.
FeaturestoreMonitoringConfig.Types
Container for nested types declared in the FeaturestoreMonitoringConfig message type.
FeaturestoreMonitoringConfig.Types.ImportFeaturesAnalysis
Configuration of the Featurestore's ImportFeature Analysis Based Monitoring. This type of analysis generates statistics for values of each Feature imported by every [ImportFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreService.ImportFeatureValues] operation.
FeaturestoreMonitoringConfig.Types.ImportFeaturesAnalysis.Types
Container for nested types declared in the ImportFeaturesAnalysis message type.
FeaturestoreMonitoringConfig.Types.SnapshotAnalysis
Configuration of the Featurestore's Snapshot Analysis Based Monitoring. This type of analysis generates statistics for each Feature based on a snapshot of the latest feature value of each entities every monitoring_interval.
FeaturestoreMonitoringConfig.Types.ThresholdConfig
The config for Featurestore Monitoring threshold.
FeaturestoreName
Resource name for the Featurestore
resource.
FeaturestoreOnlineServingService
A service for serving online feature values.
FeaturestoreOnlineServingService.FeaturestoreOnlineServingServiceBase
Base class for server-side implementations of FeaturestoreOnlineServingService
FeaturestoreOnlineServingService.FeaturestoreOnlineServingServiceClient
Client for FeaturestoreOnlineServingService
FeaturestoreOnlineServingServiceClient
FeaturestoreOnlineServingService client wrapper, for convenient use.
FeaturestoreOnlineServingServiceClient.StreamingReadFeatureValuesStream
Server streaming methods for StreamingReadFeatureValues(StreamingReadFeatureValuesRequest, CallSettings).
FeaturestoreOnlineServingServiceClientBuilder
Builder class for FeaturestoreOnlineServingServiceClient to provide simple configuration of credentials, endpoint etc.
FeaturestoreOnlineServingServiceClientImpl
FeaturestoreOnlineServingService client wrapper implementation, for convenient use.
FeaturestoreOnlineServingServiceSettings
Settings for FeaturestoreOnlineServingServiceClient instances.
FeaturestoreService
The service that handles CRUD and List for resources for Featurestore.
FeaturestoreService.FeaturestoreServiceBase
Base class for server-side implementations of FeaturestoreService
FeaturestoreService.FeaturestoreServiceClient
Client for FeaturestoreService
FeaturestoreServiceClient
FeaturestoreService client wrapper, for convenient use.
FeaturestoreServiceClientBuilder
Builder class for FeaturestoreServiceClient to provide simple configuration of credentials, endpoint etc.
FeaturestoreServiceClientImpl
FeaturestoreService client wrapper implementation, for convenient use.
FeaturestoreServiceSettings
Settings for FeaturestoreServiceClient instances.
FetchFeatureValuesRequest
Request message for [FeatureOnlineStoreService.FetchFeatureValues][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreService.FetchFeatureValues]. All the features under the requested feature view will be returned.
FetchFeatureValuesRequest.Types
Container for nested types declared in the FetchFeatureValuesRequest message type.
FetchFeatureValuesResponse
Response message for [FeatureOnlineStoreService.FetchFeatureValues][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreService.FetchFeatureValues]
FetchFeatureValuesResponse.Types
Container for nested types declared in the FetchFeatureValuesResponse message type.
FetchFeatureValuesResponse.Types.FeatureNameValuePairList
Response structure in the format of key (feature name) and (feature) value pair.
FetchFeatureValuesResponse.Types.FeatureNameValuePairList.Types
Container for nested types declared in the FeatureNameValuePairList message type.
FetchFeatureValuesResponse.Types.FeatureNameValuePairList.Types.FeatureNameValuePair
Feature name & value pair.
FileData
URI based data.
FileStatus
RagFile status.
FileStatus.Types
Container for nested types declared in the FileStatus message type.
FilterSplit
Assigns input data to training, validation, and test sets based on the given filters, data pieces not matched by any filter are ignored. Currently only supported for Datasets containing DataItems. If any of the filters in this message are to match nothing, then they can be set as '-' (the minus sign).
Supported only for unstructured Datasets.
FindNeighborsRequest
The request message for [MatchService.FindNeighbors][google.cloud.aiplatform.v1beta1.MatchService.FindNeighbors].
FindNeighborsRequest.Types
Container for nested types declared in the FindNeighborsRequest message type.
FindNeighborsRequest.Types.Query
A query to find a number of the nearest neighbors (most similar vectors) of a vector.
FindNeighborsRequest.Types.Query.Types
Container for nested types declared in the Query message type.
FindNeighborsRequest.Types.Query.Types.RRF
Parameters for RRF algorithm that combines search results.
FindNeighborsResponse
The response message for [MatchService.FindNeighbors][google.cloud.aiplatform.v1beta1.MatchService.FindNeighbors].
FindNeighborsResponse.Types
Container for nested types declared in the FindNeighborsResponse message type.
FindNeighborsResponse.Types.NearestNeighbors
Nearest neighbors for one query.
FindNeighborsResponse.Types.Neighbor
A neighbor of the query vector.
FluencyInput
Input for fluency metric.
FluencyInstance
Spec for fluency instance.
FluencyResult
Spec for fluency result.
FluencySpec
Spec for fluency score metric.
FractionSplit
Assigns the input data to training, validation, and test sets as per the
given fractions. Any of training_fraction
, validation_fraction
and
test_fraction
may optionally be provided, they must sum to up to 1. If the
provided ones sum to less than 1, the remainder is assigned to sets as
decided by Vertex AI. If none of the fractions are set, by default roughly
80% of data is used for training, 10% for validation, and 10% for test.
FulfillmentInput
Input for fulfillment metric.
FulfillmentInstance
Spec for fulfillment instance.
FulfillmentResult
Spec for fulfillment result.
FulfillmentSpec
Spec for fulfillment metric.
FunctionCall
A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values.
FunctionCallingConfig
Function calling config.
FunctionCallingConfig.Types
Container for nested types declared in the FunctionCallingConfig message type.
FunctionDeclaration
Structured representation of a function declaration as defined by the
OpenAPI 3.0 specification. Included
in this declaration are the function name and parameters. This
FunctionDeclaration is a representation of a block of code that can be used
as a Tool
by the model and executed by the client.
FunctionResponse
The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction.
GcsDestination
The Google Cloud Storage location where the output is to be written to.
GcsSource
The Google Cloud Storage location for the input content.
GenAiCacheService
Service for managing Vertex AI's CachedContent resource.
GenAiCacheService.GenAiCacheServiceBase
Base class for server-side implementations of GenAiCacheService
GenAiCacheService.GenAiCacheServiceClient
Client for GenAiCacheService
GenAiCacheServiceClient
GenAiCacheService client wrapper, for convenient use.
GenAiCacheServiceClientBuilder
Builder class for GenAiCacheServiceClient to provide simple configuration of credentials, endpoint etc.
GenAiCacheServiceClientImpl
GenAiCacheService client wrapper implementation, for convenient use.
GenAiCacheServiceSettings
Settings for GenAiCacheServiceClient instances.
GenAiTuningService
A service for creating and managing GenAI Tuning Jobs.
GenAiTuningService.GenAiTuningServiceBase
Base class for server-side implementations of GenAiTuningService
GenAiTuningService.GenAiTuningServiceClient
Client for GenAiTuningService
GenAiTuningServiceClient
GenAiTuningService client wrapper, for convenient use.
GenAiTuningServiceClientBuilder
Builder class for GenAiTuningServiceClient to provide simple configuration of credentials, endpoint etc.
GenAiTuningServiceClientImpl
GenAiTuningService client wrapper implementation, for convenient use.
GenAiTuningServiceSettings
Settings for GenAiTuningServiceClient instances.
GenerateContentRequest
Request message for [PredictionService.GenerateContent].
GenerateContentResponse
Response message for [PredictionService.GenerateContent].
GenerateContentResponse.Types
Container for nested types declared in the GenerateContentResponse message type.
GenerateContentResponse.Types.PromptFeedback
Content filter results for a prompt sent in the request.
GenerateContentResponse.Types.PromptFeedback.Types
Container for nested types declared in the PromptFeedback message type.
GenerateContentResponse.Types.UsageMetadata
Usage metadata about response(s).
GenerateVideoResponse
Generate video response.
GenerationConfig
Generation config.
GenerationConfig.Types
Container for nested types declared in the GenerationConfig message type.
GenerationConfig.Types.RoutingConfig
The configuration for routing the request to a specific model.
GenerationConfig.Types.RoutingConfig.Types
Container for nested types declared in the RoutingConfig message type.
GenerationConfig.Types.RoutingConfig.Types.AutoRoutingMode
When automated routing is specified, the routing will be determined by the pretrained routing model and customer provided model routing preference.
GenerationConfig.Types.RoutingConfig.Types.AutoRoutingMode.Types
Container for nested types declared in the AutoRoutingMode message type.
GenerationConfig.Types.RoutingConfig.Types.ManualRoutingMode
When manual routing is set, the specified model will be used directly.
GenericOperationMetadata
Generic Metadata shared by all operations.
GenieSource
Contains information about the source of the models generated from Generative AI Studio.
GetAnnotationSpecRequest
Request message for [DatasetService.GetAnnotationSpec][google.cloud.aiplatform.v1beta1.DatasetService.GetAnnotationSpec].
GetArtifactRequest
Request message for [MetadataService.GetArtifact][google.cloud.aiplatform.v1beta1.MetadataService.GetArtifact].
GetBatchPredictionJobRequest
Request message for [JobService.GetBatchPredictionJob][google.cloud.aiplatform.v1beta1.JobService.GetBatchPredictionJob].
GetCachedContentRequest
Request message for [GenAiCacheService.GetCachedContent][google.cloud.aiplatform.v1beta1.GenAiCacheService.GetCachedContent].
GetContextRequest
Request message for [MetadataService.GetContext][google.cloud.aiplatform.v1beta1.MetadataService.GetContext].
GetCustomJobRequest
Request message for [JobService.GetCustomJob][google.cloud.aiplatform.v1beta1.JobService.GetCustomJob].
GetDataLabelingJobRequest
Request message for [JobService.GetDataLabelingJob][google.cloud.aiplatform.v1beta1.JobService.GetDataLabelingJob].
GetDatasetRequest
Request message for [DatasetService.GetDataset][google.cloud.aiplatform.v1beta1.DatasetService.GetDataset].
GetDatasetVersionRequest
Request message for [DatasetService.GetDatasetVersion][google.cloud.aiplatform.v1beta1.DatasetService.GetDatasetVersion].
GetDeploymentResourcePoolRequest
Request message for GetDeploymentResourcePool method.
GetEndpointRequest
Request message for [EndpointService.GetEndpoint][google.cloud.aiplatform.v1beta1.EndpointService.GetEndpoint]
GetEntityTypeRequest
Request message for [FeaturestoreService.GetEntityType][google.cloud.aiplatform.v1beta1.FeaturestoreService.GetEntityType].
GetExecutionRequest
Request message for [MetadataService.GetExecution][google.cloud.aiplatform.v1beta1.MetadataService.GetExecution].
GetExtensionRequest
Request message for [ExtensionRegistryService.GetExtension][google.cloud.aiplatform.v1beta1.ExtensionRegistryService.GetExtension].
GetFeatureGroupRequest
Request message for [FeatureRegistryService.GetFeatureGroup][google.cloud.aiplatform.v1beta1.FeatureRegistryService.GetFeatureGroup].
GetFeatureOnlineStoreRequest
Request message for [FeatureOnlineStoreAdminService.GetFeatureOnlineStore][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.GetFeatureOnlineStore].
GetFeatureRequest
Request message for [FeaturestoreService.GetFeature][google.cloud.aiplatform.v1beta1.FeaturestoreService.GetFeature]. Request message for [FeatureRegistryService.GetFeature][google.cloud.aiplatform.v1beta1.FeatureRegistryService.GetFeature].
GetFeatureViewRequest
Request message for [FeatureOnlineStoreAdminService.GetFeatureView][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.GetFeatureView].
GetFeatureViewSyncRequest
Request message for [FeatureOnlineStoreAdminService.GetFeatureViewSync][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.GetFeatureViewSync].
GetFeaturestoreRequest
Request message for [FeaturestoreService.GetFeaturestore][google.cloud.aiplatform.v1beta1.FeaturestoreService.GetFeaturestore].
GetHyperparameterTuningJobRequest
Request message for [JobService.GetHyperparameterTuningJob][google.cloud.aiplatform.v1beta1.JobService.GetHyperparameterTuningJob].
GetIndexEndpointRequest
Request message for [IndexEndpointService.GetIndexEndpoint][google.cloud.aiplatform.v1beta1.IndexEndpointService.GetIndexEndpoint]
GetIndexRequest
Request message for [IndexService.GetIndex][google.cloud.aiplatform.v1beta1.IndexService.GetIndex]
GetMetadataSchemaRequest
Request message for [MetadataService.GetMetadataSchema][google.cloud.aiplatform.v1beta1.MetadataService.GetMetadataSchema].
GetMetadataStoreRequest
Request message for [MetadataService.GetMetadataStore][google.cloud.aiplatform.v1beta1.MetadataService.GetMetadataStore].
GetModelDeploymentMonitoringJobRequest
Request message for [JobService.GetModelDeploymentMonitoringJob][google.cloud.aiplatform.v1beta1.JobService.GetModelDeploymentMonitoringJob].
GetModelEvaluationRequest
Request message for [ModelService.GetModelEvaluation][google.cloud.aiplatform.v1beta1.ModelService.GetModelEvaluation].
GetModelEvaluationSliceRequest
Request message for [ModelService.GetModelEvaluationSlice][google.cloud.aiplatform.v1beta1.ModelService.GetModelEvaluationSlice].
GetModelMonitorRequest
Request message for [ModelMonitoringService.GetModelMonitor][google.cloud.aiplatform.v1beta1.ModelMonitoringService.GetModelMonitor].
GetModelMonitoringJobRequest
Request message for [ModelMonitoringService.GetModelMonitoringJob][google.cloud.aiplatform.v1beta1.ModelMonitoringService.GetModelMonitoringJob].
GetModelRequest
Request message for [ModelService.GetModel][google.cloud.aiplatform.v1beta1.ModelService.GetModel].
GetNasJobRequest
Request message for [JobService.GetNasJob][google.cloud.aiplatform.v1beta1.JobService.GetNasJob].
GetNasTrialDetailRequest
Request message for [JobService.GetNasTrialDetail][google.cloud.aiplatform.v1beta1.JobService.GetNasTrialDetail].
GetNotebookExecutionJobRequest
Request message for [NotebookService.GetNotebookExecutionJob]
GetNotebookRuntimeRequest
Request message for [NotebookService.GetNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.GetNotebookRuntime]
GetNotebookRuntimeTemplateRequest
Request message for [NotebookService.GetNotebookRuntimeTemplate][google.cloud.aiplatform.v1beta1.NotebookService.GetNotebookRuntimeTemplate]
GetPersistentResourceRequest
Request message for [PersistentResourceService.GetPersistentResource][google.cloud.aiplatform.v1beta1.PersistentResourceService.GetPersistentResource].
GetPipelineJobRequest
Request message for [PipelineService.GetPipelineJob][google.cloud.aiplatform.v1beta1.PipelineService.GetPipelineJob].
GetPublisherModelRequest
Request message for [ModelGardenService.GetPublisherModel][google.cloud.aiplatform.v1beta1.ModelGardenService.GetPublisherModel]
GetRagCorpusRequest
Request message for [VertexRagDataService.GetRagCorpus][google.cloud.aiplatform.v1beta1.VertexRagDataService.GetRagCorpus]
GetRagFileRequest
Request message for [VertexRagDataService.GetRagFile][google.cloud.aiplatform.v1beta1.VertexRagDataService.GetRagFile]
GetReasoningEngineRequest
Request message for [ReasoningEngineService.GetReasoningEngine][google.cloud.aiplatform.v1beta1.ReasoningEngineService.GetReasoningEngine].
GetScheduleRequest
Request message for [ScheduleService.GetSchedule][google.cloud.aiplatform.v1beta1.ScheduleService.GetSchedule].
GetSpecialistPoolRequest
Request message for [SpecialistPoolService.GetSpecialistPool][google.cloud.aiplatform.v1beta1.SpecialistPoolService.GetSpecialistPool].
GetStudyRequest
Request message for [VizierService.GetStudy][google.cloud.aiplatform.v1beta1.VizierService.GetStudy].
GetTensorboardExperimentRequest
Request message for [TensorboardService.GetTensorboardExperiment][google.cloud.aiplatform.v1beta1.TensorboardService.GetTensorboardExperiment].
GetTensorboardRequest
Request message for [TensorboardService.GetTensorboard][google.cloud.aiplatform.v1beta1.TensorboardService.GetTensorboard].
GetTensorboardRunRequest
Request message for [TensorboardService.GetTensorboardRun][google.cloud.aiplatform.v1beta1.TensorboardService.GetTensorboardRun].
GetTensorboardTimeSeriesRequest
Request message for [TensorboardService.GetTensorboardTimeSeries][google.cloud.aiplatform.v1beta1.TensorboardService.GetTensorboardTimeSeries].
GetTrainingPipelineRequest
Request message for [PipelineService.GetTrainingPipeline][google.cloud.aiplatform.v1beta1.PipelineService.GetTrainingPipeline].
GetTrialRequest
Request message for [VizierService.GetTrial][google.cloud.aiplatform.v1beta1.VizierService.GetTrial].
GetTuningJobRequest
Request message for [GenAiTuningService.GetTuningJob][google.cloud.aiplatform.v1beta1.GenAiTuningService.GetTuningJob].
GoogleDriveSource
The Google Drive location for the input content.
GoogleDriveSource.Types
Container for nested types declared in the GoogleDriveSource message type.
GoogleDriveSource.Types.ResourceId
The type and ID of the Google Drive resource.
GoogleDriveSource.Types.ResourceId.Types
Container for nested types declared in the ResourceId message type.
GoogleSearchRetrieval
Tool to retrieve public web data for grounding, powered by Google.
GroundednessInput
Input for groundedness metric.
GroundednessInstance
Spec for groundedness instance.
GroundednessResult
Spec for groundedness result.
GroundednessSpec
Spec for groundedness metric.
GroundingChunk
Grounding chunk.
GroundingChunk.Types
Container for nested types declared in the GroundingChunk message type.
GroundingChunk.Types.RetrievedContext
Chunk from context retrieved by the retrieval tools.
GroundingChunk.Types.Web
Chunk from the web.
GroundingMetadata
Metadata returned to client when grounding is enabled.
GroundingSupport
Grounding support.
HyperparameterTuningJob
Represents a HyperparameterTuningJob. A HyperparameterTuningJob has a Study specification and multiple CustomJobs with identical CustomJob specification.
HyperparameterTuningJobName
Resource name for the HyperparameterTuningJob
resource.
IdMatcher
Matcher for Features of an EntityType by Feature ID.
ImportDataConfig
Describes the location from where we import data into a Dataset, together with the labels that will be applied to the DataItems and the Annotations.
ImportDataOperationMetadata
Runtime operation information for [DatasetService.ImportData][google.cloud.aiplatform.v1beta1.DatasetService.ImportData].
ImportDataRequest
Request message for [DatasetService.ImportData][google.cloud.aiplatform.v1beta1.DatasetService.ImportData].
ImportDataResponse
Response message for [DatasetService.ImportData][google.cloud.aiplatform.v1beta1.DatasetService.ImportData].
ImportExtensionOperationMetadata
Details of [ExtensionRegistryService.ImportExtension][google.cloud.aiplatform.v1beta1.ExtensionRegistryService.ImportExtension] operation.
ImportExtensionRequest
Request message for [ExtensionRegistryService.ImportExtension][google.cloud.aiplatform.v1beta1.ExtensionRegistryService.ImportExtension].
ImportFeatureValuesOperationMetadata
Details of operations that perform import Feature values.
ImportFeatureValuesRequest
Request message for [FeaturestoreService.ImportFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreService.ImportFeatureValues].
ImportFeatureValuesRequest.Types
Container for nested types declared in the ImportFeatureValuesRequest message type.
ImportFeatureValuesRequest.Types.FeatureSpec
Defines the Feature value(s) to import.
ImportFeatureValuesResponse
Response message for [FeaturestoreService.ImportFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreService.ImportFeatureValues].
ImportModelEvaluationRequest
Request message for [ModelService.ImportModelEvaluation][google.cloud.aiplatform.v1beta1.ModelService.ImportModelEvaluation]
ImportRagFilesConfig
Config for importing RagFiles.
ImportRagFilesOperationMetadata
Runtime operation information for [VertexRagDataService.ImportRagFiles][google.cloud.aiplatform.v1beta1.VertexRagDataService.ImportRagFiles].
ImportRagFilesRequest
Request message for [VertexRagDataService.ImportRagFiles][google.cloud.aiplatform.v1beta1.VertexRagDataService.ImportRagFiles].
ImportRagFilesResponse
Response message for [VertexRagDataService.ImportRagFiles][google.cloud.aiplatform.v1beta1.VertexRagDataService.ImportRagFiles].
Index
A representation of a collection of database items organized in a way that allows for approximate nearest neighbor (a.k.a ANN) algorithms search.
Index.Types
Container for nested types declared in the Index message type.
IndexDatapoint
A datapoint of Index.
IndexDatapoint.Types
Container for nested types declared in the IndexDatapoint message type.
IndexDatapoint.Types.CrowdingTag
Crowding tag is a constraint on a neighbor list produced by nearest neighbor search requiring that no more than some value k' of the k neighbors returned have the same value of crowding_attribute.
IndexDatapoint.Types.NumericRestriction
This field allows restricts to be based on numeric comparisons rather than categorical tokens.
IndexDatapoint.Types.NumericRestriction.Types
Container for nested types declared in the NumericRestriction message type.
IndexDatapoint.Types.Restriction
Restriction of a datapoint which describe its attributes(tokens) from each of several attribute categories(namespaces).
IndexDatapoint.Types.SparseEmbedding
Feature embedding vector for sparse index. An array of numbers whose values are located in the specified dimensions.
IndexEndpoint
Indexes are deployed into it. An IndexEndpoint can have multiple DeployedIndexes.
IndexEndpointName
Resource name for the IndexEndpoint
resource.
IndexEndpointService
A service for managing Vertex AI's IndexEndpoints.
IndexEndpointService.IndexEndpointServiceBase
Base class for server-side implementations of IndexEndpointService
IndexEndpointService.IndexEndpointServiceClient
Client for IndexEndpointService
IndexEndpointServiceClient
IndexEndpointService client wrapper, for convenient use.
IndexEndpointServiceClientBuilder
Builder class for IndexEndpointServiceClient to provide simple configuration of credentials, endpoint etc.
IndexEndpointServiceClientImpl
IndexEndpointService client wrapper implementation, for convenient use.
IndexEndpointServiceSettings
Settings for IndexEndpointServiceClient instances.
IndexName
Resource name for the Index
resource.
IndexPrivateEndpoints
IndexPrivateEndpoints proto is used to provide paths for users to send requests via private endpoints (e.g. private service access, private service connect). To send request via private service access, use match_grpc_address. To send request via private service connect, use service_attachment.
IndexService
A service for creating and managing Vertex AI's Index resources.
IndexService.IndexServiceBase
Base class for server-side implementations of IndexService
IndexService.IndexServiceClient
Client for IndexService
IndexServiceClient
IndexService client wrapper, for convenient use.
IndexServiceClientBuilder
Builder class for IndexServiceClient to provide simple configuration of credentials, endpoint etc.
IndexServiceClientImpl
IndexService client wrapper implementation, for convenient use.
IndexServiceSettings
Settings for IndexServiceClient instances.
IndexStats
Stats of the Index.
InputDataConfig
Specifies Vertex AI owned input data to be used for training, and possibly evaluating, the Model.
Int64Array
A list of int64 values.
IntegratedGradientsAttribution
An attribution method that computes the Aumann-Shapley value taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
JiraSource
The Jira source for the ImportRagFilesRequest.
JiraSource.Types
Container for nested types declared in the JiraSource message type.
JiraSource.Types.JiraQueries
JiraQueries contains the Jira queries and corresponding authentication.
JobService
A service for creating and managing Vertex AI's jobs.
JobService.JobServiceBase
Base class for server-side implementations of JobService
JobService.JobServiceClient
Client for JobService
JobServiceClient
JobService client wrapper, for convenient use.
JobServiceClientBuilder
Builder class for JobServiceClient to provide simple configuration of credentials, endpoint etc.
JobServiceClientImpl
JobService client wrapper implementation, for convenient use.
JobServiceSettings
Settings for JobServiceClient instances.
LargeModelReference
Contains information about the Large Model.
LineageSubgraph
A subgraph of the overall lineage graph. Event edges connect Artifact and Execution nodes.
ListAnnotationsRequest
Request message for [DatasetService.ListAnnotations][google.cloud.aiplatform.v1beta1.DatasetService.ListAnnotations].
ListAnnotationsResponse
Response message for [DatasetService.ListAnnotations][google.cloud.aiplatform.v1beta1.DatasetService.ListAnnotations].
ListArtifactsRequest
Request message for [MetadataService.ListArtifacts][google.cloud.aiplatform.v1beta1.MetadataService.ListArtifacts].
ListArtifactsResponse
Response message for [MetadataService.ListArtifacts][google.cloud.aiplatform.v1beta1.MetadataService.ListArtifacts].
ListBatchPredictionJobsRequest
Request message for [JobService.ListBatchPredictionJobs][google.cloud.aiplatform.v1beta1.JobService.ListBatchPredictionJobs].
ListBatchPredictionJobsResponse
Response message for [JobService.ListBatchPredictionJobs][google.cloud.aiplatform.v1beta1.JobService.ListBatchPredictionJobs]
ListCachedContentsRequest
Request to list CachedContents.
ListCachedContentsResponse
Response with a list of CachedContents.
ListContextsRequest
Request message for [MetadataService.ListContexts][google.cloud.aiplatform.v1beta1.MetadataService.ListContexts]
ListContextsResponse
Response message for [MetadataService.ListContexts][google.cloud.aiplatform.v1beta1.MetadataService.ListContexts].
ListCustomJobsRequest
Request message for [JobService.ListCustomJobs][google.cloud.aiplatform.v1beta1.JobService.ListCustomJobs].
ListCustomJobsResponse
Response message for [JobService.ListCustomJobs][google.cloud.aiplatform.v1beta1.JobService.ListCustomJobs]
ListDataItemsRequest
Request message for [DatasetService.ListDataItems][google.cloud.aiplatform.v1beta1.DatasetService.ListDataItems].
ListDataItemsResponse
Response message for [DatasetService.ListDataItems][google.cloud.aiplatform.v1beta1.DatasetService.ListDataItems].
ListDataLabelingJobsRequest
Request message for [JobService.ListDataLabelingJobs][google.cloud.aiplatform.v1beta1.JobService.ListDataLabelingJobs].
ListDataLabelingJobsResponse
Response message for [JobService.ListDataLabelingJobs][google.cloud.aiplatform.v1beta1.JobService.ListDataLabelingJobs].
ListDatasetVersionsRequest
Request message for [DatasetService.ListDatasetVersions][google.cloud.aiplatform.v1beta1.DatasetService.ListDatasetVersions].
ListDatasetVersionsResponse
Response message for [DatasetService.ListDatasetVersions][google.cloud.aiplatform.v1beta1.DatasetService.ListDatasetVersions].
ListDatasetsRequest
Request message for [DatasetService.ListDatasets][google.cloud.aiplatform.v1beta1.DatasetService.ListDatasets].
ListDatasetsResponse
Response message for [DatasetService.ListDatasets][google.cloud.aiplatform.v1beta1.DatasetService.ListDatasets].
ListDeploymentResourcePoolsRequest
Request message for ListDeploymentResourcePools method.
ListDeploymentResourcePoolsResponse
Response message for ListDeploymentResourcePools method.
ListEndpointsRequest
Request message for [EndpointService.ListEndpoints][google.cloud.aiplatform.v1beta1.EndpointService.ListEndpoints].
ListEndpointsResponse
Response message for [EndpointService.ListEndpoints][google.cloud.aiplatform.v1beta1.EndpointService.ListEndpoints].
ListEntityTypesRequest
Request message for [FeaturestoreService.ListEntityTypes][google.cloud.aiplatform.v1beta1.FeaturestoreService.ListEntityTypes].
ListEntityTypesResponse
Response message for [FeaturestoreService.ListEntityTypes][google.cloud.aiplatform.v1beta1.FeaturestoreService.ListEntityTypes].
ListExecutionsRequest
Request message for [MetadataService.ListExecutions][google.cloud.aiplatform.v1beta1.MetadataService.ListExecutions].
ListExecutionsResponse
Response message for [MetadataService.ListExecutions][google.cloud.aiplatform.v1beta1.MetadataService.ListExecutions].
ListExtensionsRequest
Request message for [ExtensionRegistryService.ListExtensions][google.cloud.aiplatform.v1beta1.ExtensionRegistryService.ListExtensions].
ListExtensionsResponse
Response message for [ExtensionRegistryService.ListExtensions][google.cloud.aiplatform.v1beta1.ExtensionRegistryService.ListExtensions]
ListFeatureGroupsRequest
Request message for [FeatureRegistryService.ListFeatureGroups][google.cloud.aiplatform.v1beta1.FeatureRegistryService.ListFeatureGroups].
ListFeatureGroupsResponse
Response message for [FeatureRegistryService.ListFeatureGroups][google.cloud.aiplatform.v1beta1.FeatureRegistryService.ListFeatureGroups].
ListFeatureOnlineStoresRequest
Request message for [FeatureOnlineStoreAdminService.ListFeatureOnlineStores][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.ListFeatureOnlineStores].
ListFeatureOnlineStoresResponse
Response message for [FeatureOnlineStoreAdminService.ListFeatureOnlineStores][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.ListFeatureOnlineStores].
ListFeatureViewSyncsRequest
Request message for [FeatureOnlineStoreAdminService.ListFeatureViewSyncs][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.ListFeatureViewSyncs].
ListFeatureViewSyncsResponse
Response message for [FeatureOnlineStoreAdminService.ListFeatureViewSyncs][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.ListFeatureViewSyncs].
ListFeatureViewsRequest
Request message for [FeatureOnlineStoreAdminService.ListFeatureViews][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.ListFeatureViews].
ListFeatureViewsResponse
Response message for [FeatureOnlineStoreAdminService.ListFeatureViews][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.ListFeatureViews].
ListFeaturesRequest
Request message for [FeaturestoreService.ListFeatures][google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeatures]. Request message for [FeatureRegistryService.ListFeatures][google.cloud.aiplatform.v1beta1.FeatureRegistryService.ListFeatures].
ListFeaturesResponse
Response message for [FeaturestoreService.ListFeatures][google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeatures]. Response message for [FeatureRegistryService.ListFeatures][google.cloud.aiplatform.v1beta1.FeatureRegistryService.ListFeatures].
ListFeaturestoresRequest
Request message for [FeaturestoreService.ListFeaturestores][google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeaturestores].
ListFeaturestoresResponse
Response message for [FeaturestoreService.ListFeaturestores][google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeaturestores].
ListHyperparameterTuningJobsRequest
Request message for [JobService.ListHyperparameterTuningJobs][google.cloud.aiplatform.v1beta1.JobService.ListHyperparameterTuningJobs].
ListHyperparameterTuningJobsResponse
Response message for [JobService.ListHyperparameterTuningJobs][google.cloud.aiplatform.v1beta1.JobService.ListHyperparameterTuningJobs]
ListIndexEndpointsRequest
Request message for [IndexEndpointService.ListIndexEndpoints][google.cloud.aiplatform.v1beta1.IndexEndpointService.ListIndexEndpoints].
ListIndexEndpointsResponse
Response message for [IndexEndpointService.ListIndexEndpoints][google.cloud.aiplatform.v1beta1.IndexEndpointService.ListIndexEndpoints].
ListIndexesRequest
Request message for [IndexService.ListIndexes][google.cloud.aiplatform.v1beta1.IndexService.ListIndexes].
ListIndexesResponse
Response message for [IndexService.ListIndexes][google.cloud.aiplatform.v1beta1.IndexService.ListIndexes].
ListMetadataSchemasRequest
Request message for [MetadataService.ListMetadataSchemas][google.cloud.aiplatform.v1beta1.MetadataService.ListMetadataSchemas].
ListMetadataSchemasResponse
Response message for [MetadataService.ListMetadataSchemas][google.cloud.aiplatform.v1beta1.MetadataService.ListMetadataSchemas].
ListMetadataStoresRequest
Request message for [MetadataService.ListMetadataStores][google.cloud.aiplatform.v1beta1.MetadataService.ListMetadataStores].
ListMetadataStoresResponse
Response message for [MetadataService.ListMetadataStores][google.cloud.aiplatform.v1beta1.MetadataService.ListMetadataStores].
ListModelDeploymentMonitoringJobsRequest
Request message for [JobService.ListModelDeploymentMonitoringJobs][google.cloud.aiplatform.v1beta1.JobService.ListModelDeploymentMonitoringJobs].
ListModelDeploymentMonitoringJobsResponse
Response message for [JobService.ListModelDeploymentMonitoringJobs][google.cloud.aiplatform.v1beta1.JobService.ListModelDeploymentMonitoringJobs].
ListModelEvaluationSlicesRequest
Request message for [ModelService.ListModelEvaluationSlices][google.cloud.aiplatform.v1beta1.ModelService.ListModelEvaluationSlices].
ListModelEvaluationSlicesResponse
Response message for [ModelService.ListModelEvaluationSlices][google.cloud.aiplatform.v1beta1.ModelService.ListModelEvaluationSlices].
ListModelEvaluationsRequest
Request message for [ModelService.ListModelEvaluations][google.cloud.aiplatform.v1beta1.ModelService.ListModelEvaluations].
ListModelEvaluationsResponse
Response message for [ModelService.ListModelEvaluations][google.cloud.aiplatform.v1beta1.ModelService.ListModelEvaluations].
ListModelMonitoringJobsRequest
Request message for [ModelMonitoringService.ListModelMonitoringJobs][google.cloud.aiplatform.v1beta1.ModelMonitoringService.ListModelMonitoringJobs].
ListModelMonitoringJobsResponse
Response message for [ModelMonitoringService.ListModelMonitoringJobs][google.cloud.aiplatform.v1beta1.ModelMonitoringService.ListModelMonitoringJobs].
ListModelMonitorsRequest
Request message for [ModelMonitoringService.ListModelMonitors][google.cloud.aiplatform.v1beta1.ModelMonitoringService.ListModelMonitors].
ListModelMonitorsResponse
Response message for [ModelMonitoringService.ListModelMonitors][google.cloud.aiplatform.v1beta1.ModelMonitoringService.ListModelMonitors]
ListModelVersionsRequest
Request message for [ModelService.ListModelVersions][google.cloud.aiplatform.v1beta1.ModelService.ListModelVersions].
ListModelVersionsResponse
Response message for [ModelService.ListModelVersions][google.cloud.aiplatform.v1beta1.ModelService.ListModelVersions]
ListModelsRequest
Request message for [ModelService.ListModels][google.cloud.aiplatform.v1beta1.ModelService.ListModels].
ListModelsResponse
Response message for [ModelService.ListModels][google.cloud.aiplatform.v1beta1.ModelService.ListModels]
ListNasJobsRequest
Request message for [JobService.ListNasJobs][google.cloud.aiplatform.v1beta1.JobService.ListNasJobs].
ListNasJobsResponse
Response message for [JobService.ListNasJobs][google.cloud.aiplatform.v1beta1.JobService.ListNasJobs]
ListNasTrialDetailsRequest
Request message for [JobService.ListNasTrialDetails][google.cloud.aiplatform.v1beta1.JobService.ListNasTrialDetails].
ListNasTrialDetailsResponse
Response message for [JobService.ListNasTrialDetails][google.cloud.aiplatform.v1beta1.JobService.ListNasTrialDetails]
ListNotebookExecutionJobsRequest
Request message for [NotebookService.ListNotebookExecutionJobs]
ListNotebookExecutionJobsResponse
Response message for [NotebookService.CreateNotebookExecutionJob]
ListNotebookRuntimeTemplatesRequest
Request message for [NotebookService.ListNotebookRuntimeTemplates][google.cloud.aiplatform.v1beta1.NotebookService.ListNotebookRuntimeTemplates].
ListNotebookRuntimeTemplatesResponse
Response message for [NotebookService.ListNotebookRuntimeTemplates][google.cloud.aiplatform.v1beta1.NotebookService.ListNotebookRuntimeTemplates].
ListNotebookRuntimesRequest
Request message for [NotebookService.ListNotebookRuntimes][google.cloud.aiplatform.v1beta1.NotebookService.ListNotebookRuntimes].
ListNotebookRuntimesResponse
Response message for [NotebookService.ListNotebookRuntimes][google.cloud.aiplatform.v1beta1.NotebookService.ListNotebookRuntimes].
ListOptimalTrialsRequest
Request message for [VizierService.ListOptimalTrials][google.cloud.aiplatform.v1beta1.VizierService.ListOptimalTrials].
ListOptimalTrialsResponse
Response message for [VizierService.ListOptimalTrials][google.cloud.aiplatform.v1beta1.VizierService.ListOptimalTrials].
ListPersistentResourcesRequest
Request message for [PersistentResourceService.ListPersistentResource][].
ListPersistentResourcesResponse
Response message for [PersistentResourceService.ListPersistentResources][google.cloud.aiplatform.v1beta1.PersistentResourceService.ListPersistentResources]
ListPipelineJobsRequest
Request message for [PipelineService.ListPipelineJobs][google.cloud.aiplatform.v1beta1.PipelineService.ListPipelineJobs].
ListPipelineJobsResponse
Response message for [PipelineService.ListPipelineJobs][google.cloud.aiplatform.v1beta1.PipelineService.ListPipelineJobs]
ListPublisherModelsRequest
Request message for [ModelGardenService.ListPublisherModels][google.cloud.aiplatform.v1beta1.ModelGardenService.ListPublisherModels].
ListPublisherModelsResponse
Response message for [ModelGardenService.ListPublisherModels][google.cloud.aiplatform.v1beta1.ModelGardenService.ListPublisherModels].
ListRagCorporaRequest
Request message for [VertexRagDataService.ListRagCorpora][google.cloud.aiplatform.v1beta1.VertexRagDataService.ListRagCorpora].
ListRagCorporaResponse
Response message for [VertexRagDataService.ListRagCorpora][google.cloud.aiplatform.v1beta1.VertexRagDataService.ListRagCorpora].
ListRagFilesRequest
Request message for [VertexRagDataService.ListRagFiles][google.cloud.aiplatform.v1beta1.VertexRagDataService.ListRagFiles].
ListRagFilesResponse
Response message for [VertexRagDataService.ListRagFiles][google.cloud.aiplatform.v1beta1.VertexRagDataService.ListRagFiles].
ListReasoningEnginesRequest
Request message for [ReasoningEngineService.ListReasoningEngines][google.cloud.aiplatform.v1beta1.ReasoningEngineService.ListReasoningEngines].
ListReasoningEnginesResponse
Response message for [ReasoningEngineService.ListReasoningEngines][google.cloud.aiplatform.v1beta1.ReasoningEngineService.ListReasoningEngines]
ListSavedQueriesRequest
Request message for [DatasetService.ListSavedQueries][google.cloud.aiplatform.v1beta1.DatasetService.ListSavedQueries].
ListSavedQueriesResponse
Response message for [DatasetService.ListSavedQueries][google.cloud.aiplatform.v1beta1.DatasetService.ListSavedQueries].
ListSchedulesRequest
Request message for [ScheduleService.ListSchedules][google.cloud.aiplatform.v1beta1.ScheduleService.ListSchedules].
ListSchedulesResponse
Response message for [ScheduleService.ListSchedules][google.cloud.aiplatform.v1beta1.ScheduleService.ListSchedules]
ListSpecialistPoolsRequest
Request message for [SpecialistPoolService.ListSpecialistPools][google.cloud.aiplatform.v1beta1.SpecialistPoolService.ListSpecialistPools].
ListSpecialistPoolsResponse
Response message for [SpecialistPoolService.ListSpecialistPools][google.cloud.aiplatform.v1beta1.SpecialistPoolService.ListSpecialistPools].
ListStudiesRequest
Request message for [VizierService.ListStudies][google.cloud.aiplatform.v1beta1.VizierService.ListStudies].
ListStudiesResponse
Response message for [VizierService.ListStudies][google.cloud.aiplatform.v1beta1.VizierService.ListStudies].
ListTensorboardExperimentsRequest
Request message for [TensorboardService.ListTensorboardExperiments][google.cloud.aiplatform.v1beta1.TensorboardService.ListTensorboardExperiments].
ListTensorboardExperimentsResponse
Response message for [TensorboardService.ListTensorboardExperiments][google.cloud.aiplatform.v1beta1.TensorboardService.ListTensorboardExperiments].
ListTensorboardRunsRequest
Request message for [TensorboardService.ListTensorboardRuns][google.cloud.aiplatform.v1beta1.TensorboardService.ListTensorboardRuns].
ListTensorboardRunsResponse
Response message for [TensorboardService.ListTensorboardRuns][google.cloud.aiplatform.v1beta1.TensorboardService.ListTensorboardRuns].
ListTensorboardTimeSeriesRequest
Request message for [TensorboardService.ListTensorboardTimeSeries][google.cloud.aiplatform.v1beta1.TensorboardService.ListTensorboardTimeSeries].
ListTensorboardTimeSeriesResponse
Response message for [TensorboardService.ListTensorboardTimeSeries][google.cloud.aiplatform.v1beta1.TensorboardService.ListTensorboardTimeSeries].
ListTensorboardsRequest
Request message for [TensorboardService.ListTensorboards][google.cloud.aiplatform.v1beta1.TensorboardService.ListTensorboards].
ListTensorboardsResponse
Response message for [TensorboardService.ListTensorboards][google.cloud.aiplatform.v1beta1.TensorboardService.ListTensorboards].
ListTrainingPipelinesRequest
Request message for [PipelineService.ListTrainingPipelines][google.cloud.aiplatform.v1beta1.PipelineService.ListTrainingPipelines].
ListTrainingPipelinesResponse
Response message for [PipelineService.ListTrainingPipelines][google.cloud.aiplatform.v1beta1.PipelineService.ListTrainingPipelines]
ListTrialsRequest
Request message for [VizierService.ListTrials][google.cloud.aiplatform.v1beta1.VizierService.ListTrials].
ListTrialsResponse
Response message for [VizierService.ListTrials][google.cloud.aiplatform.v1beta1.VizierService.ListTrials].
ListTuningJobsRequest
Request message for [GenAiTuningService.ListTuningJobs][google.cloud.aiplatform.v1beta1.GenAiTuningService.ListTuningJobs].
ListTuningJobsResponse
Response message for [GenAiTuningService.ListTuningJobs][google.cloud.aiplatform.v1beta1.GenAiTuningService.ListTuningJobs]
LlmUtilityService
Service for LLM related utility functions.
LlmUtilityService.LlmUtilityServiceBase
Base class for server-side implementations of LlmUtilityService
LlmUtilityService.LlmUtilityServiceClient
Client for LlmUtilityService
LlmUtilityServiceClient
LlmUtilityService client wrapper, for convenient use.
LlmUtilityServiceClientBuilder
Builder class for LlmUtilityServiceClient to provide simple configuration of credentials, endpoint etc.
LlmUtilityServiceClientImpl
LlmUtilityService client wrapper implementation, for convenient use.
LlmUtilityServiceSettings
Settings for LlmUtilityServiceClient instances.
LogprobsResult
Logprobs Result
LogprobsResult.Types
Container for nested types declared in the LogprobsResult message type.
LogprobsResult.Types.Candidate
Candidate for the logprobs token and score.
LogprobsResult.Types.TopCandidates
Candidates with top log probabilities at each decoding step.
LookupStudyRequest
Request message for [VizierService.LookupStudy][google.cloud.aiplatform.v1beta1.VizierService.LookupStudy].
MachineSpec
Specification of a single machine.
ManualBatchTuningParameters
Manual batch tuning parameters.
MatchService
MatchService is a Google managed service for efficient vector similarity search at scale.
MatchService.MatchServiceBase
Base class for server-side implementations of MatchService
MatchService.MatchServiceClient
Client for MatchService
MatchServiceClient
MatchService client wrapper, for convenient use.
MatchServiceClientBuilder
Builder class for MatchServiceClient to provide simple configuration of credentials, endpoint etc.
MatchServiceClientImpl
MatchService client wrapper implementation, for convenient use.
MatchServiceSettings
Settings for MatchServiceClient instances.
Measurement
A message representing a Measurement of a Trial. A Measurement contains the Metrics got by executing a Trial using suggested hyperparameter values.
Measurement.Types
Container for nested types declared in the Measurement message type.
Measurement.Types.Metric
A message representing a metric in the measurement.
MergeVersionAliasesRequest
Request message for [ModelService.MergeVersionAliases][google.cloud.aiplatform.v1beta1.ModelService.MergeVersionAliases].
MetadataSchema
Instance of a general MetadataSchema.
MetadataSchema.Types
Container for nested types declared in the MetadataSchema message type.
MetadataSchemaName
Resource name for the MetadataSchema
resource.
MetadataService
Service for reading and writing metadata entries.
MetadataService.MetadataServiceBase
Base class for server-side implementations of MetadataService
MetadataService.MetadataServiceClient
Client for MetadataService
MetadataServiceClient
MetadataService client wrapper, for convenient use.
MetadataServiceClientBuilder
Builder class for MetadataServiceClient to provide simple configuration of credentials, endpoint etc.
MetadataServiceClientImpl
MetadataService client wrapper implementation, for convenient use.
MetadataServiceSettings
Settings for MetadataServiceClient instances.
MetadataStore
Instance of a metadata store. Contains a set of metadata that can be queried.
MetadataStore.Types
Container for nested types declared in the MetadataStore message type.
MetadataStore.Types.DataplexConfig
Represents Dataplex integration settings.
MetadataStore.Types.MetadataStoreState
Represents state information for a MetadataStore.
MetadataStoreName
Resource name for the MetadataStore
resource.
MigratableResource
Represents one resource that exists in automl.googleapis.com, datalabeling.googleapis.com or ml.googleapis.com.
MigratableResource.Types
Container for nested types declared in the MigratableResource message type.
MigratableResource.Types.AutomlDataset
Represents one Dataset in automl.googleapis.com.
MigratableResource.Types.AutomlModel
Represents one Model in automl.googleapis.com.
MigratableResource.Types.DataLabelingDataset
Represents one Dataset in datalabeling.googleapis.com.
MigratableResource.Types.DataLabelingDataset.Types
Container for nested types declared in the DataLabelingDataset message type.
MigratableResource.Types.DataLabelingDataset.Types.DataLabelingAnnotatedDataset
Represents one AnnotatedDataset in datalabeling.googleapis.com.
MigratableResource.Types.MlEngineModelVersion
Represents one model Version in ml.googleapis.com.
MigrateResourceRequest
Config of migrating one resource from automl.googleapis.com, datalabeling.googleapis.com and ml.googleapis.com to Vertex AI.
MigrateResourceRequest.Types
Container for nested types declared in the MigrateResourceRequest message type.
MigrateResourceRequest.Types.MigrateAutomlDatasetConfig
Config for migrating Dataset in automl.googleapis.com to Vertex AI's Dataset.
MigrateResourceRequest.Types.MigrateAutomlModelConfig
Config for migrating Model in automl.googleapis.com to Vertex AI's Model.
MigrateResourceRequest.Types.MigrateDataLabelingDatasetConfig
Config for migrating Dataset in datalabeling.googleapis.com to Vertex AI's Dataset.
MigrateResourceRequest.Types.MigrateDataLabelingDatasetConfig.Types
Container for nested types declared in the MigrateDataLabelingDatasetConfig message type.
MigrateResourceRequest.Types.MigrateDataLabelingDatasetConfig.Types.MigrateDataLabelingAnnotatedDatasetConfig
Config for migrating AnnotatedDataset in datalabeling.googleapis.com to Vertex AI's SavedQuery.
MigrateResourceRequest.Types.MigrateMlEngineModelVersionConfig
Config for migrating version in ml.googleapis.com to Vertex AI's Model.
MigrateResourceResponse
Describes a successfully migrated resource.
MigrationService
A service that migrates resources from automl.googleapis.com, datalabeling.googleapis.com and ml.googleapis.com to Vertex AI.
MigrationService.MigrationServiceBase
Base class for server-side implementations of MigrationService
MigrationService.MigrationServiceClient
Client for MigrationService
MigrationServiceClient
MigrationService client wrapper, for convenient use.
MigrationServiceClientBuilder
Builder class for MigrationServiceClient to provide simple configuration of credentials, endpoint etc.
MigrationServiceClientImpl
MigrationService client wrapper implementation, for convenient use.
MigrationServiceSettings
Settings for MigrationServiceClient instances.
Model
A trained machine learning Model.
Model.Types
Container for nested types declared in the Model message type.
Model.Types.BaseModelSource
User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models.
Model.Types.ExportFormat
Represents export format supported by the Model. All formats export to Google Cloud Storage.
Model.Types.ExportFormat.Types
Container for nested types declared in the ExportFormat message type.
Model.Types.OriginalModelInfo
Contains information about the original Model if this Model is a copy.
ModelContainerSpec
Specification of a container for serving predictions. Some fields in this message correspond to fields in the Kubernetes Container v1 core specification.
ModelDeploymentMonitoringBigQueryTable
ModelDeploymentMonitoringBigQueryTable specifies the BigQuery table name as well as some information of the logs stored in this table.
ModelDeploymentMonitoringBigQueryTable.Types
Container for nested types declared in the ModelDeploymentMonitoringBigQueryTable message type.
ModelDeploymentMonitoringJob
Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors.
ModelDeploymentMonitoringJob.Types
Container for nested types declared in the ModelDeploymentMonitoringJob message type.
ModelDeploymentMonitoringJob.Types.LatestMonitoringPipelineMetadata
All metadata of most recent monitoring pipelines.
ModelDeploymentMonitoringJobName
Resource name for the ModelDeploymentMonitoringJob
resource.
ModelDeploymentMonitoringObjectiveConfig
ModelDeploymentMonitoringObjectiveConfig contains the pair of deployed_model_id to ModelMonitoringObjectiveConfig.
ModelDeploymentMonitoringScheduleConfig
The config for scheduling monitoring job.
ModelEvaluation
A collection of metrics calculated by comparing Model's predictions on all of the test data against annotations from the test data.
ModelEvaluation.Types
Container for nested types declared in the ModelEvaluation message type.
ModelEvaluation.Types.BiasConfig
Configuration for bias detection.
ModelEvaluation.Types.ModelEvaluationExplanationSpec
ModelEvaluationName
Resource name for the ModelEvaluation
resource.
ModelEvaluationSlice
A collection of metrics calculated by comparing Model's predictions on a slice of the test data against ground truth annotations.
ModelEvaluationSlice.Types
Container for nested types declared in the ModelEvaluationSlice message type.
ModelEvaluationSlice.Types.Slice
Definition of a slice.
ModelEvaluationSlice.Types.Slice.Types
Container for nested types declared in the Slice message type.
ModelEvaluationSlice.Types.Slice.Types.SliceSpec
Specification for how the data should be sliced.
ModelEvaluationSlice.Types.Slice.Types.SliceSpec.Types
Container for nested types declared in the SliceSpec message type.
ModelEvaluationSlice.Types.Slice.Types.SliceSpec.Types.Range
A range of values for slice(s).
low
is inclusive, high
is exclusive.
ModelEvaluationSlice.Types.Slice.Types.SliceSpec.Types.SliceConfig
Specification message containing the config for this SliceSpec.
When kind
is selected as value
and/or range
, only a single slice
will be computed.
When all_values
is present, a separate slice will be computed for
each possible label/value for the corresponding key in config
.
Examples, with feature zip_code with values 12345, 23334, 88888 and
feature country with values "US", "Canada", "Mexico" in the dataset:
Example 1:
{
"zip_code": { "value": { "float_value": 12345.0 } }
}
A single slice for any data with zip_code 12345 in the dataset.
Example 2:
{
"zip_code": { "range": { "low": 12345, "high": 20000 } }
}
A single slice containing data where the zip_codes between 12345 and 20000 For this example, data with the zip_code of 12345 will be in this slice.
Example 3:
{
"zip_code": { "range": { "low": 10000, "high": 20000 } },
"country": { "value": { "string_value": "US" } }
}
A single slice containing data where the zip_codes between 10000 and 20000 has the country "US". For this example, data with the zip_code of 12345 and country "US" will be in this slice.
Example 4:
{ "country": {"all_values": { "value": true } } }
Three slices are computed, one for each unique country in the dataset.
Example 5:
{
"country": { "all_values": { "value": true } },
"zip_code": { "value": { "float_value": 12345.0 } }
}
Three slices are computed, one for each unique country in the dataset where the zip_code is also 12345. For this example, data with zip_code 12345 and country "US" will be in one slice, zip_code 12345 and country "Canada" in another slice, and zip_code 12345 and country "Mexico" in another slice, totaling 3 slices.
ModelEvaluationSlice.Types.Slice.Types.SliceSpec.Types.Value
Single value that supports strings and floats.
ModelEvaluationSliceName
Resource name for the ModelEvaluationSlice
resource.
ModelExplanation
Aggregated explanation metrics for a Model over a set of instances.
ModelGardenService
The interface of Model Garden Service.
ModelGardenService.ModelGardenServiceBase
Base class for server-side implementations of ModelGardenService
ModelGardenService.ModelGardenServiceClient
Client for ModelGardenService
ModelGardenServiceClient
ModelGardenService client wrapper, for convenient use.
ModelGardenServiceClientBuilder
Builder class for ModelGardenServiceClient to provide simple configuration of credentials, endpoint etc.
ModelGardenServiceClientImpl
ModelGardenService client wrapper implementation, for convenient use.
ModelGardenServiceSettings
Settings for ModelGardenServiceClient instances.
ModelGardenSource
Contains information about the source of the models generated from Model Garden.
ModelMonitor
Vertex AI Model Monitoring Service serves as a central hub for the analysis and visualization of data quality and performance related to models. ModelMonitor stands as a top level resource for overseeing your model monitoring tasks.
ModelMonitor.Types
Container for nested types declared in the ModelMonitor message type.
ModelMonitor.Types.ModelMonitoringTarget
The monitoring target refers to the entity that is subject to analysis. e.g. Vertex AI Model version.
ModelMonitor.Types.ModelMonitoringTarget.Types
Container for nested types declared in the ModelMonitoringTarget message type.
ModelMonitor.Types.ModelMonitoringTarget.Types.VertexModelSource
Model in Vertex AI Model Registry.
ModelMonitorName
Resource name for the ModelMonitor
resource.
ModelMonitoringAlert
Represents a single monitoring alert. This is currently used in the SearchModelMonitoringAlerts api, thus the alert wrapped in this message belongs to the resource asked in the request.
ModelMonitoringAlertCondition
Monitoring alert triggered condition.
ModelMonitoringAlertConfig
The alert config for model monitoring.
ModelMonitoringAlertConfig.Types
Container for nested types declared in the ModelMonitoringAlertConfig message type.
ModelMonitoringAlertConfig.Types.EmailAlertConfig
The config for email alert.
ModelMonitoringAnomaly
Represents a single model monitoring anomaly.
ModelMonitoringAnomaly.Types
Container for nested types declared in the ModelMonitoringAnomaly message type.
ModelMonitoringAnomaly.Types.TabularAnomaly
Tabular anomaly details.
ModelMonitoringConfig
The model monitoring configuration used for Batch Prediction Job.
ModelMonitoringInput
Model monitoring data input spec.
ModelMonitoringInput.Types
Container for nested types declared in the ModelMonitoringInput message type.
ModelMonitoringInput.Types.BatchPredictionOutput
Data from Vertex AI Batch prediction job output.
ModelMonitoringInput.Types.ModelMonitoringDataset
Input dataset spec.
ModelMonitoringInput.Types.ModelMonitoringDataset.Types
Container for nested types declared in the ModelMonitoringDataset message type.
ModelMonitoringInput.Types.ModelMonitoringDataset.Types.ModelMonitoringBigQuerySource
Dataset spec for data sotred in BigQuery.
ModelMonitoringInput.Types.ModelMonitoringDataset.Types.ModelMonitoringGcsSource
Dataset spec for data stored in Google Cloud Storage.
ModelMonitoringInput.Types.ModelMonitoringDataset.Types.ModelMonitoringGcsSource.Types
Container for nested types declared in the ModelMonitoringGcsSource message type.
ModelMonitoringInput.Types.TimeOffset
Time offset setting.
ModelMonitoringInput.Types.VertexEndpointLogs
Data from Vertex AI Endpoint request response logging.
ModelMonitoringJob
Represents a model monitoring job that analyze dataset using different monitoring algorithm.
ModelMonitoringJobExecutionDetail
Represent the execution details of the job.
ModelMonitoringJobExecutionDetail.Types
Container for nested types declared in the ModelMonitoringJobExecutionDetail message type.
ModelMonitoringJobExecutionDetail.Types.ProcessedDataset
Processed dataset information.
ModelMonitoringJobName
Resource name for the ModelMonitoringJob
resource.
ModelMonitoringNotificationSpec
Notification spec(email, notification channel) for model monitoring statistics/alerts.
ModelMonitoringNotificationSpec.Types
Container for nested types declared in the ModelMonitoringNotificationSpec message type.
ModelMonitoringNotificationSpec.Types.EmailConfig
The config for email alerts.
ModelMonitoringNotificationSpec.Types.NotificationChannelConfig
Google Cloud Notification Channel config.
ModelMonitoringObjectiveConfig
The objective configuration for model monitoring, including the information needed to detect anomalies for one particular model.
ModelMonitoringObjectiveConfig.Types
Container for nested types declared in the ModelMonitoringObjectiveConfig message type.
ModelMonitoringObjectiveConfig.Types.ExplanationConfig
The config for integrating with Vertex Explainable AI. Only applicable if the Model has explanation_spec populated.
ModelMonitoringObjectiveConfig.Types.ExplanationConfig.Types
Container for nested types declared in the ExplanationConfig message type.
ModelMonitoringObjectiveConfig.Types.ExplanationConfig.Types.ExplanationBaseline
Output from [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob] for Model Monitoring baseline dataset, which can be used to generate baseline attribution scores.
ModelMonitoringObjectiveConfig.Types.ExplanationConfig.Types.ExplanationBaseline.Types
Container for nested types declared in the ExplanationBaseline message type.
ModelMonitoringObjectiveConfig.Types.PredictionDriftDetectionConfig
The config for Prediction data drift detection.
ModelMonitoringObjectiveConfig.Types.TrainingDataset
Training Dataset information.
ModelMonitoringObjectiveConfig.Types.TrainingPredictionSkewDetectionConfig
The config for Training & Prediction data skew detection. It specifies the training dataset sources and the skew detection parameters.
ModelMonitoringObjectiveSpec
Monitoring objectives spec.
ModelMonitoringObjectiveSpec.Types
Container for nested types declared in the ModelMonitoringObjectiveSpec message type.
ModelMonitoringObjectiveSpec.Types.DataDriftSpec
Data drift monitoring spec. Data drift measures the distribution distance between the current dataset and a baseline dataset. A typical use case is to detect data drift between the recent production serving dataset and the training dataset, or to compare the recent production dataset with a dataset from a previous period.
ModelMonitoringObjectiveSpec.Types.FeatureAttributionSpec
Feature attribution monitoring spec.
ModelMonitoringObjectiveSpec.Types.TabularObjective
Tabular monitoring objective.
ModelMonitoringOutputSpec
Specification for the export destination of monitoring results, including metrics, logs, etc.
ModelMonitoringSchema
The Model Monitoring Schema definition.
ModelMonitoringSchema.Types
Container for nested types declared in the ModelMonitoringSchema message type.
ModelMonitoringSchema.Types.FieldSchema
Schema field definition.
ModelMonitoringService
A service for creating and managing Vertex AI Model moitoring. This includes
ModelMonitor
resources, ModelMonitoringJob
resources.
ModelMonitoringService.ModelMonitoringServiceBase
Base class for server-side implementations of ModelMonitoringService
ModelMonitoringService.ModelMonitoringServiceClient
Client for ModelMonitoringService
ModelMonitoringServiceClient
ModelMonitoringService client wrapper, for convenient use.
ModelMonitoringServiceClientBuilder
Builder class for ModelMonitoringServiceClient to provide simple configuration of credentials, endpoint etc.
ModelMonitoringServiceClientImpl
ModelMonitoringService client wrapper implementation, for convenient use.
ModelMonitoringServiceSettings
Settings for ModelMonitoringServiceClient instances.
ModelMonitoringSpec
Monitoring monitoring job spec. It outlines the specifications for monitoring objectives, notifications, and result exports.
ModelMonitoringStats
Represents the collection of statistics for a metric.
ModelMonitoringStatsAnomalies
Statistics and anomalies generated by Model Monitoring.
ModelMonitoringStatsAnomalies.Types
Container for nested types declared in the ModelMonitoringStatsAnomalies message type.
ModelMonitoringStatsAnomalies.Types.FeatureHistoricStatsAnomalies
Historical Stats (and Anomalies) for a specific Feature.
ModelMonitoringStatsDataPoint
Represents a single statistics data point.
ModelMonitoringStatsDataPoint.Types
Container for nested types declared in the ModelMonitoringStatsDataPoint message type.
ModelMonitoringStatsDataPoint.Types.TypedValue
Typed value of the statistics.
ModelMonitoringStatsDataPoint.Types.TypedValue.Types
Container for nested types declared in the TypedValue message type.
ModelMonitoringStatsDataPoint.Types.TypedValue.Types.DistributionDataValue
Summary statistics for a population of values.
ModelMonitoringTabularStats
A collection of data points that describes the time-varying values of a tabular metric.
ModelName
Resource name for the Model
resource.
ModelService
A service for managing Vertex AI's machine learning Models.
ModelService.ModelServiceBase
Base class for server-side implementations of ModelService
ModelService.ModelServiceClient
Client for ModelService
ModelServiceClient
ModelService client wrapper, for convenient use.
ModelServiceClientBuilder
Builder class for ModelServiceClient to provide simple configuration of credentials, endpoint etc.
ModelServiceClientImpl
ModelService client wrapper implementation, for convenient use.
ModelServiceSettings
Settings for ModelServiceClient instances.
ModelSourceInfo
Detail description of the source information of the model.
ModelSourceInfo.Types
Container for nested types declared in the ModelSourceInfo message type.
MutateDeployedIndexOperationMetadata
Runtime operation information for [IndexEndpointService.MutateDeployedIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.MutateDeployedIndex].
MutateDeployedIndexRequest
Request message for [IndexEndpointService.MutateDeployedIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.MutateDeployedIndex].
MutateDeployedIndexResponse
Response message for [IndexEndpointService.MutateDeployedIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.MutateDeployedIndex].
MutateDeployedModelOperationMetadata
Runtime operation information for [EndpointService.MutateDeployedModel][google.cloud.aiplatform.v1beta1.EndpointService.MutateDeployedModel].
MutateDeployedModelRequest
Request message for [EndpointService.MutateDeployedModel][google.cloud.aiplatform.v1beta1.EndpointService.MutateDeployedModel].
MutateDeployedModelResponse
Response message for [EndpointService.MutateDeployedModel][google.cloud.aiplatform.v1beta1.EndpointService.MutateDeployedModel].
NasJob
Represents a Neural Architecture Search (NAS) job.
NasJobName
Resource name for the NasJob
resource.
NasJobOutput
Represents a uCAIP NasJob output.
NasJobOutput.Types
Container for nested types declared in the NasJobOutput message type.
NasJobOutput.Types.MultiTrialJobOutput
The output of a multi-trial Neural Architecture Search (NAS) jobs.
NasJobSpec
Represents the spec of a NasJob.
NasJobSpec.Types
Container for nested types declared in the NasJobSpec message type.
NasJobSpec.Types.MultiTrialAlgorithmSpec
The spec of multi-trial Neural Architecture Search (NAS).
NasJobSpec.Types.MultiTrialAlgorithmSpec.Types
Container for nested types declared in the MultiTrialAlgorithmSpec message type.
NasJobSpec.Types.MultiTrialAlgorithmSpec.Types.MetricSpec
Represents a metric to optimize.
NasJobSpec.Types.MultiTrialAlgorithmSpec.Types.MetricSpec.Types
Container for nested types declared in the MetricSpec message type.
NasJobSpec.Types.MultiTrialAlgorithmSpec.Types.SearchTrialSpec
Represent spec for search trials.
NasJobSpec.Types.MultiTrialAlgorithmSpec.Types.TrainTrialSpec
Represent spec for train trials.
NasTrial
Represents a uCAIP NasJob trial.
NasTrial.Types
Container for nested types declared in the NasTrial message type.
NasTrialDetail
Represents a NasTrial details along with its parameters. If there is a corresponding train NasTrial, the train NasTrial is also returned.
NasTrialDetailName
Resource name for the NasTrialDetail
resource.
NearestNeighborQuery
A query to find a number of similar entities.
NearestNeighborQuery.Types
Container for nested types declared in the NearestNeighborQuery message type.
NearestNeighborQuery.Types.Embedding
The embedding vector.
NearestNeighborQuery.Types.NumericFilter
Numeric filter is used to search a subset of the entities by using boolean rules on numeric columns. For example: Database Point 0: {name: “a” value_int: 42} {name: “b” value_float: 1.0} Database Point 1: {name: “a” value_int: 10} {name: “b” value_float: 2.0} Database Point 2: {name: “a” value_int: -1} {name: “b” value_float: 3.0} Query: {name: “a” value_int: 12 operator: LESS} // Matches Point 1, 2 {name: “b” value_float: 2.0 operator: EQUAL} // Matches Point 1
NearestNeighborQuery.Types.NumericFilter.Types
Container for nested types declared in the NumericFilter message type.
NearestNeighborQuery.Types.Parameters
Parameters that can be overrided in each query to tune query latency and recall.
NearestNeighborQuery.Types.StringFilter
String filter is used to search a subset of the entities by using boolean rules on string columns. For example: if a query specifies string filter with 'name = color, allow_tokens = {red, blue}, deny_tokens = {purple}',' then that query will match entities that are red or blue, but if those points are also purple, then they will be excluded even if they are red/blue. Only string filter is supported for now, numeric filter will be supported in the near future.
NearestNeighborSearchOperationMetadata
Runtime operation metadata with regard to Matching Engine Index.
NearestNeighborSearchOperationMetadata.Types
Container for nested types declared in the NearestNeighborSearchOperationMetadata message type.
NearestNeighborSearchOperationMetadata.Types.ContentValidationStats
NearestNeighborSearchOperationMetadata.Types.RecordError
NearestNeighborSearchOperationMetadata.Types.RecordError.Types
Container for nested types declared in the RecordError message type.
NearestNeighbors
Nearest neighbors for one query.
NearestNeighbors.Types
Container for nested types declared in the NearestNeighbors message type.
NearestNeighbors.Types.Neighbor
A neighbor of the query vector.
Neighbor
Neighbors for example-based explanations.
NetworkAttachmentName
Resource name for the NetworkAttachment
resource.
NetworkName
Resource name for the Network
resource.
NetworkSpec
Network spec.
NfsMount
Represents a mount configuration for Network File System (NFS) to mount.
NotebookEucConfig
The euc configuration of NotebookRuntimeTemplate.
NotebookExecutionJob
NotebookExecutionJob represents an instance of a notebook execution.
NotebookExecutionJob.Types
Container for nested types declared in the NotebookExecutionJob message type.
NotebookExecutionJob.Types.DataformRepositorySource
The Dataform Repository containing the input notebook.
NotebookExecutionJob.Types.DirectNotebookSource
The content of the input notebook in ipynb format.
NotebookExecutionJob.Types.GcsNotebookSource
The Cloud Storage uri for the input notebook.
NotebookExecutionJobName
Resource name for the NotebookExecutionJob
resource.
NotebookIdleShutdownConfig
The idle shutdown configuration of NotebookRuntimeTemplate, which contains the idle_timeout as required field.
NotebookRuntime
A runtime is a virtual machine allocated to a particular user for a particular Notebook file on temporary basis with lifetime limited to 24 hours.
NotebookRuntime.Types
Container for nested types declared in the NotebookRuntime message type.
NotebookRuntimeName
Resource name for the NotebookRuntime
resource.
NotebookRuntimeTemplate
A template that specifies runtime configurations such as machine type, runtime version, network configurations, etc. Multiple runtimes can be created from a runtime template.
NotebookRuntimeTemplateName
Resource name for the NotebookRuntimeTemplate
resource.
NotebookRuntimeTemplateRef
Points to a NotebookRuntimeTemplateRef.
NotebookService
The interface for Vertex Notebook service (a.k.a. Colab on Workbench).
NotebookService.NotebookServiceBase
Base class for server-side implementations of NotebookService
NotebookService.NotebookServiceClient
Client for NotebookService
NotebookServiceClient
NotebookService client wrapper, for convenient use.
NotebookServiceClientBuilder
Builder class for NotebookServiceClient to provide simple configuration of credentials, endpoint etc.
NotebookServiceClientImpl
NotebookService client wrapper implementation, for convenient use.
NotebookServiceSettings
Settings for NotebookServiceClient instances.
NotificationChannelName
Resource name for the NotificationChannel
resource.
OpenApiSchema
Schema is used to define the format of input/output data. Represents a select subset of an OpenAPI 3.0 schema object. More fields may be added in the future as needed.
PSCAutomationConfig
PSC config that is used to automatically create forwarding rule via ServiceConnectionMap.
PairwiseMetricInput
Input for pairwise metric.
PairwiseMetricInstance
Pairwise metric instance. Usually one instance corresponds to one row in an evaluation dataset.
PairwiseMetricResult
Spec for pairwise metric result.
PairwiseMetricSpec
Spec for pairwise metric.
PairwiseQuestionAnsweringQualityInput
Input for pairwise question answering quality metric.
PairwiseQuestionAnsweringQualityInstance
Spec for pairwise question answering quality instance.
PairwiseQuestionAnsweringQualityResult
Spec for pairwise question answering quality result.
PairwiseQuestionAnsweringQualitySpec
Spec for pairwise question answering quality score metric.
PairwiseSummarizationQualityInput
Input for pairwise summarization quality metric.
PairwiseSummarizationQualityInstance
Spec for pairwise summarization quality instance.
PairwiseSummarizationQualityResult
Spec for pairwise summarization quality result.
PairwiseSummarizationQualitySpec
Spec for pairwise summarization quality score metric.
Part
A datatype containing media that is part of a multi-part Content
message.
A Part
consists of data which has an associated datatype. A Part
can only
contain one of the accepted types in Part.data
.
A Part
must have a fixed IANA MIME type identifying the type and subtype
of the media if inline_data
or file_data
field is filled with raw bytes.
PauseModelDeploymentMonitoringJobRequest
Request message for [JobService.PauseModelDeploymentMonitoringJob][google.cloud.aiplatform.v1beta1.JobService.PauseModelDeploymentMonitoringJob].
PauseScheduleRequest
Request message for [ScheduleService.PauseSchedule][google.cloud.aiplatform.v1beta1.ScheduleService.PauseSchedule].
PersistentDiskSpec
Represents the spec of [persistent disk][https://cloud.google.com/compute/docs/disks/persistent-disks] options.
PersistentResource
Represents long-lasting resources that are dedicated to users to runs custom workloads. A PersistentResource can have multiple node pools and each node pool can have its own machine spec.
PersistentResource.Types
Container for nested types declared in the PersistentResource message type.
PersistentResourceName
Resource name for the PersistentResource
resource.
PersistentResourceService
A service for managing Vertex AI's machine learning PersistentResource.
PersistentResourceService.PersistentResourceServiceBase
Base class for server-side implementations of PersistentResourceService
PersistentResourceService.PersistentResourceServiceClient
Client for PersistentResourceService
PersistentResourceServiceClient
PersistentResourceService client wrapper, for convenient use.
PersistentResourceServiceClientBuilder
Builder class for PersistentResourceServiceClient to provide simple configuration of credentials, endpoint etc.
PersistentResourceServiceClientImpl
PersistentResourceService client wrapper implementation, for convenient use.
PersistentResourceServiceSettings
Settings for PersistentResourceServiceClient instances.
PipelineJob
An instance of a machine learning PipelineJob.
PipelineJob.Types
Container for nested types declared in the PipelineJob message type.
PipelineJob.Types.RuntimeConfig
The runtime config of a PipelineJob.
PipelineJob.Types.RuntimeConfig.Types
Container for nested types declared in the RuntimeConfig message type.
PipelineJob.Types.RuntimeConfig.Types.InputArtifact
The type of an input artifact.
PipelineJobDetail
The runtime detail of PipelineJob.
PipelineJobName
Resource name for the PipelineJob
resource.
PipelineService
A service for creating and managing Vertex AI's pipelines. This includes both
TrainingPipeline
resources (used for AutoML and custom training) and
PipelineJob
resources (used for Vertex AI Pipelines).
PipelineService.PipelineServiceBase
Base class for server-side implementations of PipelineService
PipelineService.PipelineServiceClient
Client for PipelineService
PipelineServiceClient
PipelineService client wrapper, for convenient use.
PipelineServiceClientBuilder
Builder class for PipelineServiceClient to provide simple configuration of credentials, endpoint etc.
PipelineServiceClientImpl
PipelineService client wrapper implementation, for convenient use.
PipelineServiceSettings
Settings for PipelineServiceClient instances.
PipelineTaskDetail
The runtime detail of a task execution.
PipelineTaskDetail.Types
Container for nested types declared in the PipelineTaskDetail message type.
PipelineTaskDetail.Types.ArtifactList
A list of artifact metadata.
PipelineTaskDetail.Types.PipelineTaskStatus
A single record of the task status.
PipelineTaskExecutorDetail
The runtime detail of a pipeline executor.
PipelineTaskExecutorDetail.Types
Container for nested types declared in the PipelineTaskExecutorDetail message type.
PipelineTaskExecutorDetail.Types.ContainerDetail
The detail of a container execution. It contains the job names of the lifecycle of a container execution.
PipelineTaskExecutorDetail.Types.CustomJobDetail
The detailed info for a custom job executor.
PipelineTaskRerunConfig
User provided rerun config to submit a rerun pipelinejob. This includes
- Which task to rerun
- User override input parameters and artifacts.
PipelineTaskRerunConfig.Types
Container for nested types declared in the PipelineTaskRerunConfig message type.
PipelineTaskRerunConfig.Types.ArtifactList
A list of artifact metadata.
PipelineTaskRerunConfig.Types.Inputs
Runtime inputs data of the task.
PipelineTemplateMetadata
Pipeline template metadata if [PipelineJob.template_uri][google.cloud.aiplatform.v1beta1.PipelineJob.template_uri] is from supported template registry. Currently, the only supported registry is Artifact Registry.
PointwiseMetricInput
Input for pointwise metric.
PointwiseMetricInstance
Pointwise metric instance. Usually one instance corresponds to one row in an evaluation dataset.
PointwiseMetricResult
Spec for pointwise metric result.
PointwiseMetricSpec
Spec for pointwise metric.
Port
Represents a network port in a container.
PredefinedSplit
Assigns input data to training, validation, and test sets based on the value of a provided key.
Supported only for tabular Datasets.
PredictLongRunningMetadata
Metadata for PredictLongRunning long running operations.
PredictLongRunningResponse
Response message for [PredictionService.PredictLongRunning]
PredictRequest
Request message for [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict].
PredictRequestResponseLoggingConfig
Configuration for logging request-response to a BigQuery table.
PredictResponse
Response message for [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict].
PredictSchemata
Contains the schemata used in Model's predictions and explanations via [PredictionService.Predict][google.cloud.aiplatform.v1beta1.PredictionService.Predict], [PredictionService.Explain][google.cloud.aiplatform.v1beta1.PredictionService.Explain] and [BatchPredictionJob][google.cloud.aiplatform.v1beta1.BatchPredictionJob].
PredictionService
A service for online predictions and explanations.
PredictionService.PredictionServiceBase
Base class for server-side implementations of PredictionService
PredictionService.PredictionServiceClient
Client for PredictionService
PredictionServiceClient
PredictionService client wrapper, for convenient use.
PredictionServiceClient.ChatCompletionsStream
Server streaming methods for ChatCompletions(ChatCompletionsRequest, CallSettings).
PredictionServiceClient.ServerStreamingPredictStream
Server streaming methods for ServerStreamingPredict(StreamingPredictRequest, CallSettings).
PredictionServiceClient.StreamDirectPredictStream
Bidirectional streaming methods for StreamDirectPredict(CallSettings, BidirectionalStreamingSettings).
PredictionServiceClient.StreamDirectRawPredictStream
Bidirectional streaming methods for StreamDirectRawPredict(CallSettings, BidirectionalStreamingSettings).
PredictionServiceClient.StreamGenerateContentStream
Server streaming methods for StreamGenerateContent(GenerateContentRequest, CallSettings).
PredictionServiceClient.StreamRawPredictStream
Server streaming methods for StreamRawPredict(StreamRawPredictRequest, CallSettings).
PredictionServiceClient.StreamingPredictStream
Bidirectional streaming methods for StreamingPredict(CallSettings, BidirectionalStreamingSettings).
PredictionServiceClient.StreamingRawPredictStream
Bidirectional streaming methods for StreamingRawPredict(CallSettings, BidirectionalStreamingSettings).
PredictionServiceClientBuilder
Builder class for PredictionServiceClient to provide simple configuration of credentials, endpoint etc.
PredictionServiceClientImpl
PredictionService client wrapper implementation, for convenient use.
PredictionServiceSettings
Settings for PredictionServiceClient instances.
Presets
Preset configuration for example-based explanations
Presets.Types
Container for nested types declared in the Presets message type.
PrivateEndpoints
PrivateEndpoints proto is used to provide paths for users to send requests privately. To send request via private service access, use predict_http_uri, explain_http_uri or health_http_uri. To send request via private service connect, use service_attachment.
PrivateServiceConnectConfig
Represents configuration for private service connect.
Probe
Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic.
Probe.Types
Container for nested types declared in the Probe message type.
Probe.Types.ExecAction
ExecAction specifies a command to execute.
PscAutomatedEndpoints
PscAutomatedEndpoints defines the output of the forwarding rule automatically created by each PscAutomationConfig.
PscInterfaceConfig
Configuration for PSC-I.
PublisherModel
A Model Garden Publisher Model.
PublisherModel.Types
Container for nested types declared in the PublisherModel message type.
PublisherModel.Types.CallToAction
Actions could take on this Publisher Model.
PublisherModel.Types.CallToAction.Types
Container for nested types declared in the CallToAction message type.
PublisherModel.Types.CallToAction.Types.Deploy
Model metadata that is needed for UploadModel or DeployModel/CreateEndpoint requests.
PublisherModel.Types.CallToAction.Types.Deploy.Types
Container for nested types declared in the Deploy message type.
PublisherModel.Types.CallToAction.Types.Deploy.Types.DeployMetadata
Metadata information about the deployment for managing deployment config.
PublisherModel.Types.CallToAction.Types.DeployGke
Configurations for PublisherModel GKE deployment
PublisherModel.Types.CallToAction.Types.OpenFineTuningPipelines
Open fine tuning pipelines.
PublisherModel.Types.CallToAction.Types.OpenNotebooks
Open notebooks.
PublisherModel.Types.CallToAction.Types.RegionalResourceReferences
The regional resource name or the URI. Key is region, e.g., us-central1, europe-west2, global, etc..
PublisherModel.Types.CallToAction.Types.ViewRestApi
Rest API docs.
PublisherModel.Types.Documentation
A named piece of documentation.
PublisherModel.Types.Parent
The information about the parent of a model.
PublisherModel.Types.ResourceReference
Reference to a resource.
PublisherModelName
Resource name for the PublisherModel
resource.
PurgeArtifactsMetadata
Details of operations that perform [MetadataService.PurgeArtifacts][google.cloud.aiplatform.v1beta1.MetadataService.PurgeArtifacts].
PurgeArtifactsRequest
Request message for [MetadataService.PurgeArtifacts][google.cloud.aiplatform.v1beta1.MetadataService.PurgeArtifacts].
PurgeArtifactsResponse
Response message for [MetadataService.PurgeArtifacts][google.cloud.aiplatform.v1beta1.MetadataService.PurgeArtifacts].
PurgeContextsMetadata
Details of operations that perform [MetadataService.PurgeContexts][google.cloud.aiplatform.v1beta1.MetadataService.PurgeContexts].
PurgeContextsRequest
Request message for [MetadataService.PurgeContexts][google.cloud.aiplatform.v1beta1.MetadataService.PurgeContexts].
PurgeContextsResponse
Response message for [MetadataService.PurgeContexts][google.cloud.aiplatform.v1beta1.MetadataService.PurgeContexts].
PurgeExecutionsMetadata
Details of operations that perform [MetadataService.PurgeExecutions][google.cloud.aiplatform.v1beta1.MetadataService.PurgeExecutions].
PurgeExecutionsRequest
Request message for [MetadataService.PurgeExecutions][google.cloud.aiplatform.v1beta1.MetadataService.PurgeExecutions].
PurgeExecutionsResponse
Response message for [MetadataService.PurgeExecutions][google.cloud.aiplatform.v1beta1.MetadataService.PurgeExecutions].
PythonPackageSpec
The spec of a Python packaged code.
QueryArtifactLineageSubgraphRequest
Request message for [MetadataService.QueryArtifactLineageSubgraph][google.cloud.aiplatform.v1beta1.MetadataService.QueryArtifactLineageSubgraph].
QueryContextLineageSubgraphRequest
Request message for [MetadataService.QueryContextLineageSubgraph][google.cloud.aiplatform.v1beta1.MetadataService.QueryContextLineageSubgraph].
QueryDeployedModelsRequest
Request message for QueryDeployedModels method.
QueryDeployedModelsResponse
Response message for QueryDeployedModels method.
QueryExecutionInputsAndOutputsRequest
Request message for [MetadataService.QueryExecutionInputsAndOutputs][google.cloud.aiplatform.v1beta1.MetadataService.QueryExecutionInputsAndOutputs].
QueryExtensionRequest
Request message for [ExtensionExecutionService.QueryExtension][google.cloud.aiplatform.v1beta1.ExtensionExecutionService.QueryExtension].
QueryExtensionResponse
Response message for [ExtensionExecutionService.QueryExtension][google.cloud.aiplatform.v1beta1.ExtensionExecutionService.QueryExtension].
QueryReasoningEngineRequest
Request message for [ReasoningEngineExecutionService.Query][].
QueryReasoningEngineResponse
Response message for [ReasoningEngineExecutionService.Query][]
QuestionAnsweringCorrectnessInput
Input for question answering correctness metric.
QuestionAnsweringCorrectnessInstance
Spec for question answering correctness instance.
QuestionAnsweringCorrectnessResult
Spec for question answering correctness result.
QuestionAnsweringCorrectnessSpec
Spec for question answering correctness metric.
QuestionAnsweringHelpfulnessInput
Input for question answering helpfulness metric.
QuestionAnsweringHelpfulnessInstance
Spec for question answering helpfulness instance.
QuestionAnsweringHelpfulnessResult
Spec for question answering helpfulness result.
QuestionAnsweringHelpfulnessSpec
Spec for question answering helpfulness metric.
QuestionAnsweringQualityInput
Input for question answering quality metric.
QuestionAnsweringQualityInstance
Spec for question answering quality instance.
QuestionAnsweringQualityResult
Spec for question answering quality result.
QuestionAnsweringQualitySpec
Spec for question answering quality score metric.
QuestionAnsweringRelevanceInput
Input for question answering relevance metric.
QuestionAnsweringRelevanceInstance
Spec for question answering relevance instance.
QuestionAnsweringRelevanceResult
Spec for question answering relevance result.
QuestionAnsweringRelevanceSpec
Spec for question answering relevance metric.
RagContexts
Relevant contexts for one query.
RagContexts.Types
Container for nested types declared in the RagContexts message type.
RagContexts.Types.Context
A context of the query.
RagCorpus
A RagCorpus is a RagFile container and a project can have multiple RagCorpora.
RagCorpusName
Resource name for the RagCorpus
resource.
RagEmbeddingModelConfig
Config for the embedding model to use for RAG.
RagEmbeddingModelConfig.Types
Container for nested types declared in the RagEmbeddingModelConfig message type.
RagEmbeddingModelConfig.Types.HybridSearchConfig
Config for hybrid search.
RagEmbeddingModelConfig.Types.SparseEmbeddingConfig
Configuration for sparse emebdding generation.
RagEmbeddingModelConfig.Types.SparseEmbeddingConfig.Types
Container for nested types declared in the SparseEmbeddingConfig message type.
RagEmbeddingModelConfig.Types.SparseEmbeddingConfig.Types.Bm25
Message for BM25 parameters.
RagEmbeddingModelConfig.Types.VertexPredictionEndpoint
Config representing a model hosted on Vertex Prediction Endpoint.
RagFile
A RagFile contains user data for chunking, embedding and indexing.
RagFile.Types
Container for nested types declared in the RagFile message type.
RagFileChunkingConfig
Specifies the size and overlap of chunks for RagFiles.
RagFileName
Resource name for the RagFile
resource.
RagFileParsingConfig
Specifies the parsing config for RagFiles.
RagQuery
A query to retrieve relevant contexts.
RagQuery.Types
Container for nested types declared in the RagQuery message type.
RagQuery.Types.Ranking
Configurations for hybrid search results ranking.
RagVectorDbConfig
Config for the Vector DB to use for RAG.
RagVectorDbConfig.Types
Container for nested types declared in the RagVectorDbConfig message type.
RagVectorDbConfig.Types.Pinecone
The config for the Pinecone.
RagVectorDbConfig.Types.RagManagedDb
The config for the default RAG-managed Vector DB.
RagVectorDbConfig.Types.VertexFeatureStore
The config for the Vertex Feature Store.
RagVectorDbConfig.Types.VertexVectorSearch
The config for the Vertex Vector Search.
RagVectorDbConfig.Types.Weaviate
The config for the Weaviate.
RawPredictRequest
Request message for [PredictionService.RawPredict][google.cloud.aiplatform.v1beta1.PredictionService.RawPredict].
RayLogsSpec
Configuration for the Ray OSS Logs.
RayMetricSpec
Configuration for the Ray metrics.
RaySpec
Configuration information for the Ray cluster. For experimental launch, Ray cluster creation and Persistent cluster creation are 1:1 mapping: We will provision all the nodes within the Persistent cluster as Ray nodes.
ReadFeatureValuesRequest
Request message for [FeaturestoreOnlineServingService.ReadFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreOnlineServingService.ReadFeatureValues].
ReadFeatureValuesResponse
Response message for [FeaturestoreOnlineServingService.ReadFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreOnlineServingService.ReadFeatureValues].
ReadFeatureValuesResponse.Types
Container for nested types declared in the ReadFeatureValuesResponse message type.
ReadFeatureValuesResponse.Types.EntityView
Entity view with Feature values.
ReadFeatureValuesResponse.Types.EntityView.Types
Container for nested types declared in the EntityView message type.
ReadFeatureValuesResponse.Types.EntityView.Types.Data
Container to hold value(s), successive in time, for one Feature from the request.
ReadFeatureValuesResponse.Types.FeatureDescriptor
Metadata for requested Features.
ReadFeatureValuesResponse.Types.Header
Response header with metadata for the requested [ReadFeatureValuesRequest.entity_type][google.cloud.aiplatform.v1beta1.ReadFeatureValuesRequest.entity_type] and Features.
ReadIndexDatapointsRequest
The request message for [MatchService.ReadIndexDatapoints][google.cloud.aiplatform.v1beta1.MatchService.ReadIndexDatapoints].
ReadIndexDatapointsResponse
The response message for [MatchService.ReadIndexDatapoints][google.cloud.aiplatform.v1beta1.MatchService.ReadIndexDatapoints].
ReadTensorboardBlobDataRequest
Request message for [TensorboardService.ReadTensorboardBlobData][google.cloud.aiplatform.v1beta1.TensorboardService.ReadTensorboardBlobData].
ReadTensorboardBlobDataResponse
Response message for [TensorboardService.ReadTensorboardBlobData][google.cloud.aiplatform.v1beta1.TensorboardService.ReadTensorboardBlobData].
ReadTensorboardSizeRequest
Request message for [TensorboardService.ReadTensorboardSize][google.cloud.aiplatform.v1beta1.TensorboardService.ReadTensorboardSize].
ReadTensorboardSizeResponse
Response message for [TensorboardService.ReadTensorboardSize][google.cloud.aiplatform.v1beta1.TensorboardService.ReadTensorboardSize].
ReadTensorboardTimeSeriesDataRequest
Request message for [TensorboardService.ReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1beta1.TensorboardService.ReadTensorboardTimeSeriesData].
ReadTensorboardTimeSeriesDataResponse
Response message for [TensorboardService.ReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1beta1.TensorboardService.ReadTensorboardTimeSeriesData].
ReadTensorboardUsageRequest
Request message for [TensorboardService.ReadTensorboardUsage][google.cloud.aiplatform.v1beta1.TensorboardService.ReadTensorboardUsage].
ReadTensorboardUsageResponse
Response message for [TensorboardService.ReadTensorboardUsage][google.cloud.aiplatform.v1beta1.TensorboardService.ReadTensorboardUsage].
ReadTensorboardUsageResponse.Types
Container for nested types declared in the ReadTensorboardUsageResponse message type.
ReadTensorboardUsageResponse.Types.PerMonthUsageData
Per month usage data
ReadTensorboardUsageResponse.Types.PerUserUsageData
Per user usage data.
ReasoningEngine
ReasoningEngine provides a customizable runtime for models to determine which actions to take and in which order.
ReasoningEngineExecutionService
A service for executing queries on Reasoning Engine.
ReasoningEngineExecutionService.ReasoningEngineExecutionServiceBase
Base class for server-side implementations of ReasoningEngineExecutionService
ReasoningEngineExecutionService.ReasoningEngineExecutionServiceClient
Client for ReasoningEngineExecutionService
ReasoningEngineExecutionServiceClient
ReasoningEngineExecutionService client wrapper, for convenient use.
ReasoningEngineExecutionServiceClientBuilder
Builder class for ReasoningEngineExecutionServiceClient to provide simple configuration of credentials, endpoint etc.
ReasoningEngineExecutionServiceClientImpl
ReasoningEngineExecutionService client wrapper implementation, for convenient use.
ReasoningEngineExecutionServiceSettings
Settings for ReasoningEngineExecutionServiceClient instances.
ReasoningEngineName
Resource name for the ReasoningEngine
resource.
ReasoningEngineService
A service for managing Vertex AI's Reasoning Engines.
ReasoningEngineService.ReasoningEngineServiceBase
Base class for server-side implementations of ReasoningEngineService
ReasoningEngineService.ReasoningEngineServiceClient
Client for ReasoningEngineService
ReasoningEngineServiceClient
ReasoningEngineService client wrapper, for convenient use.
ReasoningEngineServiceClientBuilder
Builder class for ReasoningEngineServiceClient to provide simple configuration of credentials, endpoint etc.
ReasoningEngineServiceClientImpl
ReasoningEngineService client wrapper implementation, for convenient use.
ReasoningEngineServiceSettings
Settings for ReasoningEngineServiceClient instances.
ReasoningEngineSpec
ReasoningEngine configurations
ReasoningEngineSpec.Types
Container for nested types declared in the ReasoningEngineSpec message type.
ReasoningEngineSpec.Types.PackageSpec
User provided package spec like pickled object and package requirements.
RebaseTunedModelOperationMetadata
Runtime operation information for [GenAiTuningService.RebaseTunedModel][google.cloud.aiplatform.v1beta1.GenAiTuningService.RebaseTunedModel].
RebaseTunedModelRequest
Request message for [GenAiTuningService.RebaseTunedModel][google.cloud.aiplatform.v1beta1.GenAiTuningService.RebaseTunedModel].
RebootPersistentResourceOperationMetadata
Details of operations that perform reboot PersistentResource.
RebootPersistentResourceRequest
Request message for [PersistentResourceService.RebootPersistentResource][google.cloud.aiplatform.v1beta1.PersistentResourceService.RebootPersistentResource].
RemoveContextChildrenRequest
Request message for [MetadataService.DeleteContextChildrenRequest][].
RemoveContextChildrenResponse
Response message for [MetadataService.RemoveContextChildren][google.cloud.aiplatform.v1beta1.MetadataService.RemoveContextChildren].
RemoveDatapointsRequest
Request message for [IndexService.RemoveDatapoints][google.cloud.aiplatform.v1beta1.IndexService.RemoveDatapoints]
RemoveDatapointsResponse
Response message for [IndexService.RemoveDatapoints][google.cloud.aiplatform.v1beta1.IndexService.RemoveDatapoints]
ReservationAffinity
A ReservationAffinity can be used to configure a Vertex AI resource (e.g., a DeployedModel) to draw its Compute Engine resources from a Shared Reservation, or exclusively from on-demand capacity.
ReservationAffinity.Types
Container for nested types declared in the ReservationAffinity message type.
ReservationName
Resource name for the Reservation
resource.
ResourcePool
Represents the spec of a group of resources of the same type, for example machine type, disk, and accelerators, in a PersistentResource.
ResourcePool.Types
Container for nested types declared in the ResourcePool message type.
ResourcePool.Types.AutoscalingSpec
The min/max number of replicas allowed if enabling autoscaling
ResourceRuntime
Persistent Cluster runtime information as output
ResourceRuntimeSpec
Configuration for the runtime on a PersistentResource instance, including but not limited to:
- Service accounts used to run the workloads.
- Whether to make it a dedicated Ray Cluster.
ResourcesConsumed
Statistics information about resource consumption.
RestoreDatasetVersionOperationMetadata
Runtime operation information for [DatasetService.RestoreDatasetVersion][google.cloud.aiplatform.v1beta1.DatasetService.RestoreDatasetVersion].
RestoreDatasetVersionRequest
Request message for [DatasetService.RestoreDatasetVersion][google.cloud.aiplatform.v1beta1.DatasetService.RestoreDatasetVersion].
ResumeModelDeploymentMonitoringJobRequest
Request message for [JobService.ResumeModelDeploymentMonitoringJob][google.cloud.aiplatform.v1beta1.JobService.ResumeModelDeploymentMonitoringJob].
ResumeScheduleRequest
Request message for [ScheduleService.ResumeSchedule][google.cloud.aiplatform.v1beta1.ScheduleService.ResumeSchedule].
Retrieval
Defines a retrieval tool that model can call to access external knowledge.
RetrievalMetadata
Metadata related to retrieval in the grounding flow.
RetrieveContextsRequest
Request message for [VertexRagService.RetrieveContexts][google.cloud.aiplatform.v1beta1.VertexRagService.RetrieveContexts].
RetrieveContextsRequest.Types
Container for nested types declared in the RetrieveContextsRequest message type.
RetrieveContextsRequest.Types.VertexRagStore
The data source for Vertex RagStore.
RetrieveContextsRequest.Types.VertexRagStore.Types
Container for nested types declared in the VertexRagStore message type.
RetrieveContextsRequest.Types.VertexRagStore.Types.RagResource
The definition of the Rag resource.
RetrieveContextsResponse
Response message for [VertexRagService.RetrieveContexts][google.cloud.aiplatform.v1beta1.VertexRagService.RetrieveContexts].
RougeInput
Input for rouge metric.
RougeInstance
Spec for rouge instance.
RougeMetricValue
Rouge metric value for an instance.
RougeResults
Results for rouge metric.
RougeSpec
Spec for rouge score metric - calculates the recall of n-grams in prediction as compared to reference - returns a score ranging between 0 and 1.
RuntimeArtifact
The definition of a runtime artifact.
RuntimeConfig
Runtime configuration to run the extension.
RuntimeConfig.Types
Container for nested types declared in the RuntimeConfig message type.
RuntimeConfig.Types.CodeInterpreterRuntimeConfig
RuntimeConfig.Types.VertexAISearchRuntimeConfig
SafetyInput
Input for safety metric.
SafetyInstance
Spec for safety instance.
SafetyRating
Safety rating corresponding to the generated content.
SafetyRating.Types
Container for nested types declared in the SafetyRating message type.
SafetyResult
Spec for safety result.
SafetySetting
Safety settings.
SafetySetting.Types
Container for nested types declared in the SafetySetting message type.
SafetySpec
Spec for safety metric.
SampleConfig
Active learning data sampling config. For every active learning labeling iteration, it will select a batch of data based on the sampling strategy.
SampleConfig.Types
Container for nested types declared in the SampleConfig message type.
SampledShapleyAttribution
An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features.
SamplingStrategy
Sampling Strategy for logging, can be for both training and prediction dataset.
SamplingStrategy.Types
Container for nested types declared in the SamplingStrategy message type.
SamplingStrategy.Types.RandomSampleConfig
Requests are randomly selected.
SavedQuery
A SavedQuery is a view of the dataset. It references a subset of annotations by problem type and filters.
SavedQueryName
Resource name for the SavedQuery
resource.
Scalar
One point viewable on a scalar metric plot.
Schedule
An instance of a Schedule periodically schedules runs to make API calls based on user specified time specification and API request type.
Schedule.Types
Container for nested types declared in the Schedule message type.
Schedule.Types.RunResponse
Status of a scheduled run.
ScheduleName
Resource name for the Schedule
resource.
ScheduleService
A service for creating and managing Vertex AI's Schedule resources to periodically launch shceudled runs to make API calls.
ScheduleService.ScheduleServiceBase
Base class for server-side implementations of ScheduleService
ScheduleService.ScheduleServiceClient
Client for ScheduleService
ScheduleServiceClient
ScheduleService client wrapper, for convenient use.
ScheduleServiceClientBuilder
Builder class for ScheduleServiceClient to provide simple configuration of credentials, endpoint etc.
ScheduleServiceClientImpl
ScheduleService client wrapper implementation, for convenient use.
ScheduleServiceSettings
Settings for ScheduleServiceClient instances.
Scheduling
All parameters related to queuing and scheduling of custom jobs.
Scheduling.Types
Container for nested types declared in the Scheduling message type.
SearchDataItemsRequest
Request message for [DatasetService.SearchDataItems][google.cloud.aiplatform.v1beta1.DatasetService.SearchDataItems].
SearchDataItemsRequest.Types
Container for nested types declared in the SearchDataItemsRequest message type.
SearchDataItemsRequest.Types.OrderByAnnotation
Expression that allows ranking results based on annotation's property.
SearchDataItemsResponse
Response message for [DatasetService.SearchDataItems][google.cloud.aiplatform.v1beta1.DatasetService.SearchDataItems].
SearchEntryPoint
Google search entry point.
SearchFeaturesRequest
Request message for [FeaturestoreService.SearchFeatures][google.cloud.aiplatform.v1beta1.FeaturestoreService.SearchFeatures].
SearchFeaturesResponse
Response message for [FeaturestoreService.SearchFeatures][google.cloud.aiplatform.v1beta1.FeaturestoreService.SearchFeatures].
SearchMigratableResourcesRequest
Request message for [MigrationService.SearchMigratableResources][google.cloud.aiplatform.v1beta1.MigrationService.SearchMigratableResources].
SearchMigratableResourcesResponse
Response message for [MigrationService.SearchMigratableResources][google.cloud.aiplatform.v1beta1.MigrationService.SearchMigratableResources].
SearchModelDeploymentMonitoringStatsAnomaliesRequest
Request message for [JobService.SearchModelDeploymentMonitoringStatsAnomalies][google.cloud.aiplatform.v1beta1.JobService.SearchModelDeploymentMonitoringStatsAnomalies].
SearchModelDeploymentMonitoringStatsAnomaliesRequest.Types
Container for nested types declared in the SearchModelDeploymentMonitoringStatsAnomaliesRequest message type.
SearchModelDeploymentMonitoringStatsAnomaliesRequest.Types.StatsAnomaliesObjective
Stats requested for specific objective.
SearchModelDeploymentMonitoringStatsAnomaliesResponse
Response message for [JobService.SearchModelDeploymentMonitoringStatsAnomalies][google.cloud.aiplatform.v1beta1.JobService.SearchModelDeploymentMonitoringStatsAnomalies].
SearchModelMonitoringAlertsRequest
Request message for [ModelMonitoringService.SearchModelMonitoringAlerts][google.cloud.aiplatform.v1beta1.ModelMonitoringService.SearchModelMonitoringAlerts].
SearchModelMonitoringAlertsResponse
Response message for [ModelMonitoringService.SearchModelMonitoringAlerts][google.cloud.aiplatform.v1beta1.ModelMonitoringService.SearchModelMonitoringAlerts].
SearchModelMonitoringStatsFilter
Filter for searching ModelMonitoringStats.
SearchModelMonitoringStatsFilter.Types
Container for nested types declared in the SearchModelMonitoringStatsFilter message type.
SearchModelMonitoringStatsFilter.Types.TabularStatsFilter
Tabular statistics filter.
SearchModelMonitoringStatsRequest
Request message for [ModelMonitoringService.SearchModelMonitoringStats][google.cloud.aiplatform.v1beta1.ModelMonitoringService.SearchModelMonitoringStats].
SearchModelMonitoringStatsResponse
Response message for [ModelMonitoringService.SearchModelMonitoringStats][google.cloud.aiplatform.v1beta1.ModelMonitoringService.SearchModelMonitoringStats].
SearchNearestEntitiesRequest
The request message for [FeatureOnlineStoreService.SearchNearestEntities][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreService.SearchNearestEntities].
SearchNearestEntitiesResponse
Response message for [FeatureOnlineStoreService.SearchNearestEntities][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreService.SearchNearestEntities]
SecretVersionName
Resource name for the SecretVersion
resource.
Segment
Segment of the content.
ServiceAccountSpec
Configuration for the use of custom service account to run the workloads.
ServiceName
Resource name for the Service
resource.
SharePointSources
The SharePointSources to pass to ImportRagFiles.
SharePointSources.Types
Container for nested types declared in the SharePointSources message type.
SharePointSources.Types.SharePointSource
An individual SharePointSource.
ShieldedVmConfig
A set of Shielded Instance options. See Images using supported Shielded VM features.
SlackSource
The Slack source for the ImportRagFilesRequest.
SlackSource.Types
Container for nested types declared in the SlackSource message type.
SlackSource.Types.SlackChannels
SlackChannels contains the Slack channels and corresponding access token.
SlackSource.Types.SlackChannels.Types
Container for nested types declared in the SlackChannels message type.
SlackSource.Types.SlackChannels.Types.SlackChannel
SlackChannel contains the Slack channel ID and the time range to import.
SmoothGradConfig
Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
SpecialistPool
SpecialistPool represents customers' own workforce to work on their data labeling jobs. It includes a group of specialist managers and workers. Managers are responsible for managing the workers in this pool as well as customers' data labeling jobs associated with this pool. Customers create specialist pool as well as start data labeling jobs on Cloud, managers and workers handle the jobs using CrowdCompute console.
SpecialistPoolName
Resource name for the SpecialistPool
resource.
SpecialistPoolService
A service for creating and managing Customer SpecialistPools. When customers start Data Labeling jobs, they can reuse/create Specialist Pools to bring their own Specialists to label the data. Customers can add/remove Managers for the Specialist Pool on Cloud console, then Managers will get email notifications to manage Specialists and tasks on CrowdCompute console.
SpecialistPoolService.SpecialistPoolServiceBase
Base class for server-side implementations of SpecialistPoolService
SpecialistPoolService.SpecialistPoolServiceClient
Client for SpecialistPoolService
SpecialistPoolServiceClient
SpecialistPoolService client wrapper, for convenient use.
SpecialistPoolServiceClientBuilder
Builder class for SpecialistPoolServiceClient to provide simple configuration of credentials, endpoint etc.
SpecialistPoolServiceClientImpl
SpecialistPoolService client wrapper implementation, for convenient use.
SpecialistPoolServiceSettings
Settings for SpecialistPoolServiceClient instances.
StartNotebookRuntimeOperationMetadata
Metadata information for [NotebookService.StartNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.StartNotebookRuntime].
StartNotebookRuntimeRequest
Request message for [NotebookService.StartNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.StartNotebookRuntime].
StartNotebookRuntimeResponse
Response message for [NotebookService.StartNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.StartNotebookRuntime].
StopTrialRequest
Request message for [VizierService.StopTrial][google.cloud.aiplatform.v1beta1.VizierService.StopTrial].
StratifiedSplit
Assigns input data to the training, validation, and test sets so that the
distribution of values found in the categorical column (as specified by the
key
field) is mirrored within each split. The fraction values determine
the relative sizes of the splits.
For example, if the specified column has three values, with 50% of the rows having value "A", 25% value "B", and 25% value "C", and the split fractions are specified as 80/10/10, then the training set will constitute 80% of the training data, with about 50% of the training set rows having the value "A" for the specified column, about 25% having the value "B", and about 25% having the value "C".
Only the top 500 occurring values are used; any values not in the top 500 values are randomly assigned to a split. If less than three rows contain a specific value, those rows are randomly assigned.
Supported only for tabular Datasets.
StreamDirectPredictRequest
Request message for [PredictionService.StreamDirectPredict][google.cloud.aiplatform.v1beta1.PredictionService.StreamDirectPredict].
The first message must contain [endpoint][google.cloud.aiplatform.v1beta1.StreamDirectPredictRequest.endpoint] field and optionally [input][]. The subsequent messages must contain [input][].
StreamDirectPredictResponse
Response message for [PredictionService.StreamDirectPredict][google.cloud.aiplatform.v1beta1.PredictionService.StreamDirectPredict].
StreamDirectRawPredictRequest
Request message for [PredictionService.StreamDirectRawPredict][google.cloud.aiplatform.v1beta1.PredictionService.StreamDirectRawPredict].
The first message must contain [endpoint][google.cloud.aiplatform.v1beta1.StreamDirectRawPredictRequest.endpoint] and [method_name][google.cloud.aiplatform.v1beta1.StreamDirectRawPredictRequest.method_name] fields and optionally [input][google.cloud.aiplatform.v1beta1.StreamDirectRawPredictRequest.input]. The subsequent messages must contain [input][google.cloud.aiplatform.v1beta1.StreamDirectRawPredictRequest.input]. [method_name][google.cloud.aiplatform.v1beta1.StreamDirectRawPredictRequest.method_name] in the subsequent messages have no effect.
StreamDirectRawPredictResponse
Response message for [PredictionService.StreamDirectRawPredict][google.cloud.aiplatform.v1beta1.PredictionService.StreamDirectRawPredict].
StreamRawPredictRequest
Request message for [PredictionService.StreamRawPredict][google.cloud.aiplatform.v1beta1.PredictionService.StreamRawPredict].
StreamingFetchFeatureValuesRequest
Request message for [FeatureOnlineStoreService.StreamingFetchFeatureValues][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreService.StreamingFetchFeatureValues]. For the entities requested, all features under the requested feature view will be returned.
StreamingFetchFeatureValuesResponse
Response message for [FeatureOnlineStoreService.StreamingFetchFeatureValues][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreService.StreamingFetchFeatureValues].
StreamingPredictRequest
Request message for [PredictionService.StreamingPredict][google.cloud.aiplatform.v1beta1.PredictionService.StreamingPredict].
The first message must contain [endpoint][google.cloud.aiplatform.v1beta1.StreamingPredictRequest.endpoint] field and optionally [input][]. The subsequent messages must contain [input][].
StreamingPredictResponse
Response message for [PredictionService.StreamingPredict][google.cloud.aiplatform.v1beta1.PredictionService.StreamingPredict].
StreamingRawPredictRequest
Request message for [PredictionService.StreamingRawPredict][google.cloud.aiplatform.v1beta1.PredictionService.StreamingRawPredict].
The first message must contain [endpoint][google.cloud.aiplatform.v1beta1.StreamingRawPredictRequest.endpoint] and [method_name][google.cloud.aiplatform.v1beta1.StreamingRawPredictRequest.method_name] fields and optionally [input][google.cloud.aiplatform.v1beta1.StreamingRawPredictRequest.input]. The subsequent messages must contain [input][google.cloud.aiplatform.v1beta1.StreamingRawPredictRequest.input]. [method_name][google.cloud.aiplatform.v1beta1.StreamingRawPredictRequest.method_name] in the subsequent messages have no effect.
StreamingRawPredictResponse
Response message for [PredictionService.StreamingRawPredict][google.cloud.aiplatform.v1beta1.PredictionService.StreamingRawPredict].
StreamingReadFeatureValuesRequest
Request message for [FeaturestoreOnlineServingService.StreamingFeatureValuesRead][].
StringArray
A list of string values.
StructFieldValue
One field of a Struct (or object) type feature value.
StructValue
Struct (or object) type feature value.
Study
A message representing a Study.
Study.Types
Container for nested types declared in the Study message type.
StudyName
Resource name for the Study
resource.
StudySpec
Represents specification of a Study.
StudySpec.Types
Container for nested types declared in the StudySpec message type.
StudySpec.Types.ConvexAutomatedStoppingSpec
Configuration for ConvexAutomatedStoppingSpec. When there are enough completed trials (configured by min_measurement_count), for pending trials with enough measurements and steps, the policy first computes an overestimate of the objective value at max_num_steps according to the slope of the incomplete objective value curve. No prediction can be made if the curve is completely flat. If the overestimation is worse than the best objective value of the completed trials, this pending trial will be early-stopped, but a last measurement will be added to the pending trial with max_num_steps and predicted objective value from the autoregression model.
StudySpec.Types.ConvexStopConfig
Configuration for ConvexStopPolicy.
StudySpec.Types.DecayCurveAutomatedStoppingSpec
The decay curve automated stopping rule builds a Gaussian Process Regressor to predict the final objective value of a Trial based on the already completed Trials and the intermediate measurements of the current Trial. Early stopping is requested for the current Trial if there is very low probability to exceed the optimal value found so far.
StudySpec.Types.MedianAutomatedStoppingSpec
The median automated stopping rule stops a pending Trial if the Trial's best objective_value is strictly below the median 'performance' of all completed Trials reported up to the Trial's last measurement. Currently, 'performance' refers to the running average of the objective values reported by the Trial in each measurement.
StudySpec.Types.MetricSpec
Represents a metric to optimize.
StudySpec.Types.MetricSpec.Types
Container for nested types declared in the MetricSpec message type.
StudySpec.Types.MetricSpec.Types.SafetyMetricConfig
Used in safe optimization to specify threshold levels and risk tolerance.
StudySpec.Types.ParameterSpec
Represents a single parameter to optimize.
StudySpec.Types.ParameterSpec.Types
Container for nested types declared in the ParameterSpec message type.
StudySpec.Types.ParameterSpec.Types.CategoricalValueSpec
Value specification for a parameter in CATEGORICAL
type.
StudySpec.Types.ParameterSpec.Types.ConditionalParameterSpec
Represents a parameter spec with condition from its parent parameter.
StudySpec.Types.ParameterSpec.Types.ConditionalParameterSpec.Types
Container for nested types declared in the ConditionalParameterSpec message type.
StudySpec.Types.ParameterSpec.Types.ConditionalParameterSpec.Types.CategoricalValueCondition
Represents the spec to match categorical values from parent parameter.
StudySpec.Types.ParameterSpec.Types.ConditionalParameterSpec.Types.DiscreteValueCondition
Represents the spec to match discrete values from parent parameter.
StudySpec.Types.ParameterSpec.Types.ConditionalParameterSpec.Types.IntValueCondition
Represents the spec to match integer values from parent parameter.
StudySpec.Types.ParameterSpec.Types.DiscreteValueSpec
Value specification for a parameter in DISCRETE
type.
StudySpec.Types.ParameterSpec.Types.DoubleValueSpec
Value specification for a parameter in DOUBLE
type.
StudySpec.Types.ParameterSpec.Types.IntegerValueSpec
Value specification for a parameter in INTEGER
type.
StudySpec.Types.StudyStoppingConfig
The configuration (stopping conditions) for automated stopping of a Study. Conditions include trial budgets, time budgets, and convergence detection.
StudySpec.Types.TransferLearningConfig
This contains flag for manually disabling transfer learning for a study. The names of prior studies being used for transfer learning (if any) are also listed here.
StudyTimeConstraint
Time-based Constraint for Study
SubnetworkName
Resource name for the Subnetwork
resource.
SuggestTrialsMetadata
Details of operations that perform Trials suggestion.
SuggestTrialsRequest
Request message for [VizierService.SuggestTrials][google.cloud.aiplatform.v1beta1.VizierService.SuggestTrials].
SuggestTrialsResponse
Response message for [VizierService.SuggestTrials][google.cloud.aiplatform.v1beta1.VizierService.SuggestTrials].
SummarizationHelpfulnessInput
Input for summarization helpfulness metric.
SummarizationHelpfulnessInstance
Spec for summarization helpfulness instance.
SummarizationHelpfulnessResult
Spec for summarization helpfulness result.
SummarizationHelpfulnessSpec
Spec for summarization helpfulness score metric.
SummarizationQualityInput
Input for summarization quality metric.
SummarizationQualityInstance
Spec for summarization quality instance.
SummarizationQualityResult
Spec for summarization quality result.
SummarizationQualitySpec
Spec for summarization quality score metric.
SummarizationVerbosityInput
Input for summarization verbosity metric.
SummarizationVerbosityInstance
Spec for summarization verbosity instance.
SummarizationVerbosityResult
Spec for summarization verbosity result.
SummarizationVerbositySpec
Spec for summarization verbosity score metric.
SupervisedHyperParameters
Hyperparameters for SFT.
SupervisedHyperParameters.Types
Container for nested types declared in the SupervisedHyperParameters message type.
SupervisedTuningDataStats
Tuning data statistics for Supervised Tuning.
SupervisedTuningDatasetDistribution
Dataset distribution for Supervised Tuning.
SupervisedTuningDatasetDistribution.Types
Container for nested types declared in the SupervisedTuningDatasetDistribution message type.
SupervisedTuningDatasetDistribution.Types.DatasetBucket
Dataset bucket used to create a histogram for the distribution given a population of values.
SupervisedTuningSpec
Tuning Spec for Supervised Tuning for first party models.
SyncFeatureViewRequest
Request message for [FeatureOnlineStoreAdminService.SyncFeatureView][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.SyncFeatureView].
SyncFeatureViewResponse
Response message for [FeatureOnlineStoreAdminService.SyncFeatureView][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.SyncFeatureView].
TFRecordDestination
The storage details for TFRecord output content.
Tensor
A tensor value type.
Tensor.Types
Container for nested types declared in the Tensor message type.
Tensorboard
Tensorboard is a physical database that stores users' training metrics. A default Tensorboard is provided in each region of a Google Cloud project. If needed users can also create extra Tensorboards in their projects.
TensorboardBlob
One blob (e.g, image, graph) viewable on a blob metric plot.
TensorboardBlobSequence
One point viewable on a blob metric plot, but mostly just a wrapper message
to work around repeated fields can't be used directly within oneof
fields.
TensorboardExperiment
A TensorboardExperiment is a group of TensorboardRuns, that are typically the results of a training job run, in a Tensorboard.
TensorboardExperimentName
Resource name for the TensorboardExperiment
resource.
TensorboardName
Resource name for the Tensorboard
resource.
TensorboardRun
TensorboardRun maps to a specific execution of a training job with a given set of hyperparameter values, model definition, dataset, etc
TensorboardRunName
Resource name for the TensorboardRun
resource.
TensorboardService
TensorboardService
TensorboardService.TensorboardServiceBase
Base class for server-side implementations of TensorboardService
TensorboardService.TensorboardServiceClient
Client for TensorboardService
TensorboardServiceClient
TensorboardService client wrapper, for convenient use.
TensorboardServiceClient.ReadTensorboardBlobDataStream
Server streaming methods for ReadTensorboardBlobData(ReadTensorboardBlobDataRequest, CallSettings).
TensorboardServiceClientBuilder
Builder class for TensorboardServiceClient to provide simple configuration of credentials, endpoint etc.
TensorboardServiceClientImpl
TensorboardService client wrapper implementation, for convenient use.
TensorboardServiceSettings
Settings for TensorboardServiceClient instances.
TensorboardTensor
One point viewable on a tensor metric plot.
TensorboardTimeSeries
TensorboardTimeSeries maps to times series produced in training runs
TensorboardTimeSeries.Types
Container for nested types declared in the TensorboardTimeSeries message type.
TensorboardTimeSeries.Types.Metadata
Describes metadata for a TensorboardTimeSeries.
TensorboardTimeSeriesName
Resource name for the TensorboardTimeSeries
resource.
ThresholdConfig
The config for feature monitoring threshold.
TimeSeriesData
All the data stored in a TensorboardTimeSeries.
TimeSeriesDataPoint
A TensorboardTimeSeries data point.
TimestampSplit
Assigns input data to training, validation, and test sets based on a provided timestamps. The youngest data pieces are assigned to training set, next to validation set, and the oldest to the test set.
Supported only for tabular Datasets.
TokensInfo
Tokens info with a list of tokens and the corresponding list of token ids.
Tool
Tool details that the model may use to generate response.
A Tool
is a piece of code that enables the system to interact with
external systems to perform an action, or set of actions, outside of
knowledge and scope of the model. A Tool object should contain exactly
one type of Tool (e.g FunctionDeclaration, Retrieval or
GoogleSearchRetrieval).
ToolCallValidInput
Input for tool call valid metric.
ToolCallValidInstance
Spec for tool call valid instance.
ToolCallValidMetricValue
Tool call valid metric value for an instance.
ToolCallValidResults
Results for tool call valid metric.
ToolCallValidSpec
Spec for tool call valid metric.
ToolConfig
Tool config. This config is shared for all tools provided in the request.
ToolNameMatchInput
Input for tool name match metric.
ToolNameMatchInstance
Spec for tool name match instance.
ToolNameMatchMetricValue
Tool name match metric value for an instance.
ToolNameMatchResults
Results for tool name match metric.
ToolNameMatchSpec
Spec for tool name match metric.
ToolParameterKVMatchInput
Input for tool parameter key value match metric.
ToolParameterKVMatchInstance
Spec for tool parameter key value match instance.
ToolParameterKVMatchMetricValue
Tool parameter key value match metric value for an instance.
ToolParameterKVMatchResults
Results for tool parameter key value match metric.
ToolParameterKVMatchSpec
Spec for tool parameter key value match metric.
ToolParameterKeyMatchInput
Input for tool parameter key match metric.
ToolParameterKeyMatchInstance
Spec for tool parameter key match instance.
ToolParameterKeyMatchMetricValue
Tool parameter key match metric value for an instance.
ToolParameterKeyMatchResults
Results for tool parameter key match metric.
ToolParameterKeyMatchSpec
Spec for tool parameter key match metric.
ToolUseExample
A single example of the tool usage.
ToolUseExample.Types
Container for nested types declared in the ToolUseExample message type.
ToolUseExample.Types.ExtensionOperation
Identifies one operation of the extension.
TrainingConfig
CMLE training config. For every active learning labeling iteration, system will train a machine learning model on CMLE. The trained model will be used by data sampling algorithm to select DataItems.
TrainingPipeline
The TrainingPipeline orchestrates tasks associated with training a Model. It always executes the training task, and optionally may also export data from Vertex AI's Dataset which becomes the training input, [upload][google.cloud.aiplatform.v1beta1.ModelService.UploadModel] the Model to Vertex AI, and evaluate the Model.
TrainingPipelineName
Resource name for the TrainingPipeline
resource.
Trial
A message representing a Trial. A Trial contains a unique set of Parameters that has been or will be evaluated, along with the objective metrics got by running the Trial.
Trial.Types
Container for nested types declared in the Trial message type.
Trial.Types.Parameter
A message representing a parameter to be tuned.
TrialContext
TrialName
Resource name for the Trial
resource.
TunedModel
The Model Registry Model and Online Prediction Endpoint assiociated with this [TuningJob][google.cloud.aiplatform.v1.TuningJob].
TunedModelRef
TunedModel Reference for legacy model migration.
TuningDataStats
The tuning data statistic values for [TuningJob][google.cloud.aiplatform.v1.TuningJob].
TuningJob
Represents a TuningJob that runs with Google owned models.
TuningJobName
Resource name for the TuningJob
resource.
UndeployIndexOperationMetadata
Runtime operation information for [IndexEndpointService.UndeployIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.UndeployIndex].
UndeployIndexRequest
Request message for [IndexEndpointService.UndeployIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.UndeployIndex].
UndeployIndexResponse
Response message for [IndexEndpointService.UndeployIndex][google.cloud.aiplatform.v1beta1.IndexEndpointService.UndeployIndex].
UndeployModelOperationMetadata
Runtime operation information for [EndpointService.UndeployModel][google.cloud.aiplatform.v1beta1.EndpointService.UndeployModel].
UndeployModelRequest
Request message for [EndpointService.UndeployModel][google.cloud.aiplatform.v1beta1.EndpointService.UndeployModel].
UndeployModelResponse
Response message for [EndpointService.UndeployModel][google.cloud.aiplatform.v1beta1.EndpointService.UndeployModel].
UnmanagedContainerModel
Contains model information necessary to perform batch prediction without requiring a full model import.
UpdateArtifactRequest
Request message for [MetadataService.UpdateArtifact][google.cloud.aiplatform.v1beta1.MetadataService.UpdateArtifact].
UpdateCachedContentRequest
Request message for [GenAiCacheService.UpdateCachedContent][google.cloud.aiplatform.v1beta1.GenAiCacheService.UpdateCachedContent]. Only expire_time or ttl can be updated.
UpdateContextRequest
Request message for [MetadataService.UpdateContext][google.cloud.aiplatform.v1beta1.MetadataService.UpdateContext].
UpdateDatasetRequest
Request message for [DatasetService.UpdateDataset][google.cloud.aiplatform.v1beta1.DatasetService.UpdateDataset].
UpdateDatasetVersionRequest
Request message for [DatasetService.UpdateDatasetVersion][google.cloud.aiplatform.v1beta1.DatasetService.UpdateDatasetVersion].
UpdateDeploymentResourcePoolOperationMetadata
Runtime operation information for UpdateDeploymentResourcePool method.
UpdateDeploymentResourcePoolRequest
Request message for UpdateDeploymentResourcePool method.
UpdateEndpointRequest
Request message for [EndpointService.UpdateEndpoint][google.cloud.aiplatform.v1beta1.EndpointService.UpdateEndpoint].
UpdateEntityTypeRequest
Request message for [FeaturestoreService.UpdateEntityType][google.cloud.aiplatform.v1beta1.FeaturestoreService.UpdateEntityType].
UpdateExecutionRequest
Request message for [MetadataService.UpdateExecution][google.cloud.aiplatform.v1beta1.MetadataService.UpdateExecution].
UpdateExplanationDatasetOperationMetadata
Runtime operation information for [ModelService.UpdateExplanationDataset][google.cloud.aiplatform.v1beta1.ModelService.UpdateExplanationDataset].
UpdateExplanationDatasetRequest
Request message for [ModelService.UpdateExplanationDataset][google.cloud.aiplatform.v1beta1.ModelService.UpdateExplanationDataset].
UpdateExplanationDatasetResponse
Response message of [ModelService.UpdateExplanationDataset][google.cloud.aiplatform.v1beta1.ModelService.UpdateExplanationDataset] operation.
UpdateExtensionRequest
Request message for [ExtensionRegistryService.UpdateExtension][google.cloud.aiplatform.v1beta1.ExtensionRegistryService.UpdateExtension].
UpdateFeatureGroupOperationMetadata
Details of operations that perform update FeatureGroup.
UpdateFeatureGroupRequest
Request message for [FeatureRegistryService.UpdateFeatureGroup][google.cloud.aiplatform.v1beta1.FeatureRegistryService.UpdateFeatureGroup].
UpdateFeatureOnlineStoreOperationMetadata
Details of operations that perform update FeatureOnlineStore.
UpdateFeatureOnlineStoreRequest
Request message for [FeatureOnlineStoreAdminService.UpdateFeatureOnlineStore][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.UpdateFeatureOnlineStore].
UpdateFeatureOperationMetadata
Details of operations that perform update Feature.
UpdateFeatureRequest
Request message for [FeaturestoreService.UpdateFeature][google.cloud.aiplatform.v1beta1.FeaturestoreService.UpdateFeature]. Request message for [FeatureRegistryService.UpdateFeature][google.cloud.aiplatform.v1beta1.FeatureRegistryService.UpdateFeature].
UpdateFeatureViewOperationMetadata
Details of operations that perform update FeatureView.
UpdateFeatureViewRequest
Request message for [FeatureOnlineStoreAdminService.UpdateFeatureView][google.cloud.aiplatform.v1beta1.FeatureOnlineStoreAdminService.UpdateFeatureView].
UpdateFeaturestoreOperationMetadata
Details of operations that perform update Featurestore.
UpdateFeaturestoreRequest
Request message for [FeaturestoreService.UpdateFeaturestore][google.cloud.aiplatform.v1beta1.FeaturestoreService.UpdateFeaturestore].
UpdateIndexEndpointRequest
Request message for [IndexEndpointService.UpdateIndexEndpoint][google.cloud.aiplatform.v1beta1.IndexEndpointService.UpdateIndexEndpoint].
UpdateIndexOperationMetadata
Runtime operation information for [IndexService.UpdateIndex][google.cloud.aiplatform.v1beta1.IndexService.UpdateIndex].
UpdateIndexRequest
Request message for [IndexService.UpdateIndex][google.cloud.aiplatform.v1beta1.IndexService.UpdateIndex].
UpdateModelDeploymentMonitoringJobOperationMetadata
Runtime operation information for [JobService.UpdateModelDeploymentMonitoringJob][google.cloud.aiplatform.v1beta1.JobService.UpdateModelDeploymentMonitoringJob].
UpdateModelDeploymentMonitoringJobRequest
Request message for [JobService.UpdateModelDeploymentMonitoringJob][google.cloud.aiplatform.v1beta1.JobService.UpdateModelDeploymentMonitoringJob].
UpdateModelMonitorOperationMetadata
Runtime operation information for [ModelMonitoringService.UpdateModelMonitor][google.cloud.aiplatform.v1beta1.ModelMonitoringService.UpdateModelMonitor].
UpdateModelMonitorRequest
Request message for [ModelMonitoringService.UpdateModelMonitor][google.cloud.aiplatform.v1beta1.ModelMonitoringService.UpdateModelMonitor].
UpdateModelRequest
Request message for [ModelService.UpdateModel][google.cloud.aiplatform.v1beta1.ModelService.UpdateModel].
UpdateNotebookRuntimeTemplateRequest
Request message for [NotebookService.UpdateNotebookRuntimeTemplate][google.cloud.aiplatform.v1beta1.NotebookService.UpdateNotebookRuntimeTemplate].
UpdatePersistentResourceOperationMetadata
Details of operations that perform update PersistentResource.
UpdatePersistentResourceRequest
Request message for UpdatePersistentResource method.
UpdateRagCorpusOperationMetadata
Runtime operation information for [VertexRagDataService.UpdateRagCorpus][google.cloud.aiplatform.v1beta1.VertexRagDataService.UpdateRagCorpus].
UpdateRagCorpusRequest
Request message for [VertexRagDataService.UpdateRagCorpus][google.cloud.aiplatform.v1beta1.VertexRagDataService.UpdateRagCorpus].
UpdateReasoningEngineOperationMetadata
Details of [ReasoningEngineService.UpdateReasoningEngine][google.cloud.aiplatform.v1beta1.ReasoningEngineService.UpdateReasoningEngine] operation.
UpdateReasoningEngineRequest
Request message for [ReasoningEngineService.UpdateReasoningEngine][google.cloud.aiplatform.v1beta1.ReasoningEngineService.UpdateReasoningEngine].
UpdateScheduleRequest
Request message for [ScheduleService.UpdateSchedule][google.cloud.aiplatform.v1beta1.ScheduleService.UpdateSchedule].
UpdateSpecialistPoolOperationMetadata
Runtime operation metadata for [SpecialistPoolService.UpdateSpecialistPool][google.cloud.aiplatform.v1beta1.SpecialistPoolService.UpdateSpecialistPool].
UpdateSpecialistPoolRequest
Request message for [SpecialistPoolService.UpdateSpecialistPool][google.cloud.aiplatform.v1beta1.SpecialistPoolService.UpdateSpecialistPool].
UpdateTensorboardExperimentRequest
Request message for [TensorboardService.UpdateTensorboardExperiment][google.cloud.aiplatform.v1beta1.TensorboardService.UpdateTensorboardExperiment].
UpdateTensorboardOperationMetadata
Details of operations that perform update Tensorboard.
UpdateTensorboardRequest
Request message for [TensorboardService.UpdateTensorboard][google.cloud.aiplatform.v1beta1.TensorboardService.UpdateTensorboard].
UpdateTensorboardRunRequest
Request message for [TensorboardService.UpdateTensorboardRun][google.cloud.aiplatform.v1beta1.TensorboardService.UpdateTensorboardRun].
UpdateTensorboardTimeSeriesRequest
Request message for [TensorboardService.UpdateTensorboardTimeSeries][google.cloud.aiplatform.v1beta1.TensorboardService.UpdateTensorboardTimeSeries].
UpgradeNotebookRuntimeOperationMetadata
Metadata information for [NotebookService.UpgradeNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.UpgradeNotebookRuntime].
UpgradeNotebookRuntimeRequest
Request message for [NotebookService.UpgradeNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.UpgradeNotebookRuntime].
UpgradeNotebookRuntimeResponse
Response message for [NotebookService.UpgradeNotebookRuntime][google.cloud.aiplatform.v1beta1.NotebookService.UpgradeNotebookRuntime].
UploadModelOperationMetadata
Details of [ModelService.UploadModel][google.cloud.aiplatform.v1beta1.ModelService.UploadModel] operation.
UploadModelRequest
Request message for [ModelService.UploadModel][google.cloud.aiplatform.v1beta1.ModelService.UploadModel].
UploadModelResponse
Response message of [ModelService.UploadModel][google.cloud.aiplatform.v1beta1.ModelService.UploadModel] operation.
UploadRagFileConfig
Config for uploading RagFile.
UploadRagFileRequest
Request message for [VertexRagDataService.UploadRagFile][google.cloud.aiplatform.v1beta1.VertexRagDataService.UploadRagFile].
UploadRagFileResponse
Response message for [VertexRagDataService.UploadRagFile][google.cloud.aiplatform.v1beta1.VertexRagDataService.UploadRagFile].
UpsertDatapointsRequest
Request message for [IndexService.UpsertDatapoints][google.cloud.aiplatform.v1beta1.IndexService.UpsertDatapoints]
UpsertDatapointsResponse
Response message for [IndexService.UpsertDatapoints][google.cloud.aiplatform.v1beta1.IndexService.UpsertDatapoints]
UserActionReference
References an API call. It contains more information about long running operation and Jobs that are triggered by the API call.
Value
Value is the value of the field.
VersionName
Resource name for the Version
resource.
VertexAISearch
Retrieve from Vertex AI Search datastore for grounding. See https://cloud.google.com/vertex-ai-search-and-conversation
VertexRagDataService
A service for managing user data for RAG.
VertexRagDataService.VertexRagDataServiceBase
Base class for server-side implementations of VertexRagDataService
VertexRagDataService.VertexRagDataServiceClient
Client for VertexRagDataService
VertexRagDataServiceClient
VertexRagDataService client wrapper, for convenient use.
VertexRagDataServiceClientBuilder
Builder class for VertexRagDataServiceClient to provide simple configuration of credentials, endpoint etc.
VertexRagDataServiceClientImpl
VertexRagDataService client wrapper implementation, for convenient use.
VertexRagDataServiceSettings
Settings for VertexRagDataServiceClient instances.
VertexRagService
A service for retrieving relevant contexts.
VertexRagService.VertexRagServiceBase
Base class for server-side implementations of VertexRagService
VertexRagService.VertexRagServiceClient
Client for VertexRagService
VertexRagServiceClient
VertexRagService client wrapper, for convenient use.
VertexRagServiceClientBuilder
Builder class for VertexRagServiceClient to provide simple configuration of credentials, endpoint etc.
VertexRagServiceClientImpl
VertexRagService client wrapper implementation, for convenient use.
VertexRagServiceSettings
Settings for VertexRagServiceClient instances.
VertexRagStore
Retrieve from Vertex RAG Store for grounding.
VertexRagStore.Types
Container for nested types declared in the VertexRagStore message type.
VertexRagStore.Types.RagResource
The definition of the Rag resource.
VideoMetadata
Metadata describes the input video content.
VizierService
Vertex AI Vizier API.
Vertex AI Vizier is a service to solve blackbox optimization problems, such as tuning machine learning hyperparameters and searching over deep learning architectures.
VizierService.VizierServiceBase
Base class for server-side implementations of VizierService
VizierService.VizierServiceClient
Client for VizierService
VizierServiceClient
VizierService client wrapper, for convenient use.
VizierServiceClientBuilder
Builder class for VizierServiceClient to provide simple configuration of credentials, endpoint etc.
VizierServiceClientImpl
VizierService client wrapper implementation, for convenient use.
VizierServiceSettings
Settings for VizierServiceClient instances.
WorkerPoolSpec
Represents the spec of a worker pool in a job.
WriteFeatureValuesPayload
Contains Feature values to be written for a specific entity.
WriteFeatureValuesRequest
Request message for [FeaturestoreOnlineServingService.WriteFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreOnlineServingService.WriteFeatureValues].
WriteFeatureValuesResponse
Response message for [FeaturestoreOnlineServingService.WriteFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreOnlineServingService.WriteFeatureValues].
WriteTensorboardExperimentDataRequest
Request message for [TensorboardService.WriteTensorboardExperimentData][google.cloud.aiplatform.v1beta1.TensorboardService.WriteTensorboardExperimentData].
WriteTensorboardExperimentDataResponse
Response message for [TensorboardService.WriteTensorboardExperimentData][google.cloud.aiplatform.v1beta1.TensorboardService.WriteTensorboardExperimentData].
WriteTensorboardRunDataRequest
Request message for [TensorboardService.WriteTensorboardRunData][google.cloud.aiplatform.v1beta1.TensorboardService.WriteTensorboardRunData].
WriteTensorboardRunDataResponse
Response message for [TensorboardService.WriteTensorboardRunData][google.cloud.aiplatform.v1beta1.TensorboardService.WriteTensorboardRunData].
XraiAttribution
An explanation method that redistributes Integrated Gradients attributions to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825
Supported only by image Models.
Enums
AcceleratorType
Represents a hardware accelerator type.
ActiveLearningConfig.HumanLabelingBudgetOneofCase
Enum of possible cases for the "human_labeling_budget" oneof.
AnnotatedDatasetName.ResourceNameType
The possible contents of AnnotatedDatasetName.
AnnotationName.ResourceNameType
The possible contents of AnnotationName.
AnnotationSpecName.ResourceNameType
The possible contents of AnnotationSpecName.
ApiAuth.AuthConfigOneofCase
Enum of possible cases for the "auth_config" oneof.
Artifact.Types.State
Describes the state of the Artifact.
ArtifactName.ResourceNameType
The possible contents of ArtifactName.
ArtifactTypeSchema.KindOneofCase
Enum of possible cases for the "kind" oneof.
AuthConfig.AuthConfigOneofCase
Enum of possible cases for the "auth_config" oneof.
AuthConfig.Types.OauthConfig.OauthConfigOneofCase
Enum of possible cases for the "oauth_config" oneof.
AuthConfig.Types.OidcConfig.OidcConfigOneofCase
Enum of possible cases for the "oidc_config" oneof.
AuthType
Type of Auth.
AutoMLDatasetName.ResourceNameType
The possible contents of AutoMLDatasetName.
AutoMLModelName.ResourceNameType
The possible contents of AutoMLModelName.
BatchMigrateResourcesOperationMetadata.Types.PartialResult.ResultOneofCase
Enum of possible cases for the "result" oneof.
BatchPredictionJob.Types.InputConfig.SourceOneofCase
Enum of possible cases for the "source" oneof.
BatchPredictionJob.Types.OutputConfig.DestinationOneofCase
Enum of possible cases for the "destination" oneof.
BatchPredictionJob.Types.OutputInfo.OutputLocationOneofCase
Enum of possible cases for the "output_location" oneof.
BatchPredictionJobName.ResourceNameType
The possible contents of BatchPredictionJobName.
BatchReadFeatureValuesRequest.ReadOptionOneofCase
Enum of possible cases for the "read_option" oneof.
CachedContent.ExpirationOneofCase
Enum of possible cases for the "expiration" oneof.
CachedContentName.ResourceNameType
The possible contents of CachedContentName.
Candidate.Types.FinishReason
The reason why the model stopped generating tokens. If empty, the model has not stopped generating the tokens.
ContextName.ResourceNameType
The possible contents of ContextName.
CopyModelRequest.DestinationModelOneofCase
Enum of possible cases for the "destination_model" oneof.
CorpusStatus.Types.State
RagCorpus life state.
CustomJobName.ResourceNameType
The possible contents of CustomJobName.
DataItemName.ResourceNameType
The possible contents of DataItemName.
DataLabelingDatasetName.ResourceNameType
The possible contents of DataLabelingDatasetName.
DataLabelingJobName.ResourceNameType
The possible contents of DataLabelingJobName.
DatasetName.ResourceNameType
The possible contents of DatasetName.
DatasetVersionName.ResourceNameType
The possible contents of DatasetVersionName.
DeleteFeatureValuesRequest.DeleteOptionOneofCase
Enum of possible cases for the "DeleteOption" oneof.
DeleteFeatureValuesResponse.ResponseOneofCase
Enum of possible cases for the "response" oneof.
DeployedModel.PredictionResourcesOneofCase
Enum of possible cases for the "prediction_resources" oneof.
DeploymentResourcePoolName.ResourceNameType
The possible contents of DeploymentResourcePoolName.
DistillationSpec.TeacherModelOneofCase
Enum of possible cases for the "teacher_model" oneof.
DynamicRetrievalConfig.Types.Mode
The mode of the predictor to be used in dynamic retrieval.
EndpointName.ResourceNameType
The possible contents of EndpointName.
EntityIdSelector.EntityIdsSourceOneofCase
Enum of possible cases for the "EntityIdsSource" oneof.
EntityTypeName.ResourceNameType
The possible contents of EntityTypeName.
ErrorAnalysisAnnotation.Types.QueryType
The query type used for finding the attributed items.
EvaluateInstancesRequest.MetricInputsOneofCase
Enum of possible cases for the "metric_inputs" oneof.
EvaluateInstancesResponse.EvaluationResultsOneofCase
Enum of possible cases for the "evaluation_results" oneof.
EvaluatedAnnotation.Types.EvaluatedAnnotationType
Describes the type of the EvaluatedAnnotation. The type is determined
Event.Types.Type
Describes whether an Event's Artifact is the Execution's input or output.
Examples.ConfigOneofCase
Enum of possible cases for the "config" oneof.
Examples.SourceOneofCase
Enum of possible cases for the "source" oneof.
Examples.Types.ExampleGcsSource.Types.DataFormat
The format of the input example instances.
ExamplesOverride.Types.DataFormat
Data format enum.
Execution.Types.State
Describes the state of the Execution.
ExecutionName.ResourceNameType
The possible contents of ExecutionName.
ExplanationMetadata.Types.InputMetadata.Types.Encoding
Defines how a feature is encoded. Defaults to IDENTITY.
ExplanationMetadata.Types.InputMetadata.Types.Visualization.Types.ColorMap
The color scheme used for highlighting areas.
ExplanationMetadata.Types.InputMetadata.Types.Visualization.Types.OverlayType
How the original image is displayed in the visualization.
ExplanationMetadata.Types.InputMetadata.Types.Visualization.Types.Polarity
Whether to only highlight pixels with positive contributions, negative or both. Defaults to POSITIVE.
ExplanationMetadata.Types.InputMetadata.Types.Visualization.Types.Type
Type of the image visualization. Only applicable to [Integrated Gradients attribution][google.cloud.aiplatform.v1beta1.ExplanationParameters.integrated_gradients_attribution].
ExplanationMetadata.Types.OutputMetadata.DisplayNameMappingOneofCase
Enum of possible cases for the "display_name_mapping" oneof.
ExplanationParameters.MethodOneofCase
Enum of possible cases for the "method" oneof.
ExportDataConfig.DestinationOneofCase
Enum of possible cases for the "destination" oneof.
ExportDataConfig.SplitOneofCase
Enum of possible cases for the "split" oneof.
ExportFeatureValuesRequest.ModeOneofCase
Enum of possible cases for the "mode" oneof.
ExtensionManifest.Types.ApiSpec.ApiSpecOneofCase
Enum of possible cases for the "api_spec" oneof.
ExtensionName.ResourceNameType
The possible contents of ExtensionName.
Feature.Types.MonitoringStatsAnomaly.Types.Objective
If the objective in the request is both Import Feature Analysis and Snapshot Analysis, this objective could be one of them. Otherwise, this objective should be the same as the objective in the request.
Feature.Types.ValueType
Only applicable for Vertex AI Legacy Feature Store. An enum representing the value type of a feature.
FeatureGroup.SourceOneofCase
Enum of possible cases for the "source" oneof.
FeatureGroupName.ResourceNameType
The possible contents of FeatureGroupName.
FeatureName.ResourceNameType
The possible contents of FeatureName.
FeatureOnlineStore.StorageTypeOneofCase
Enum of possible cases for the "storage_type" oneof.
FeatureOnlineStore.Types.State
Possible states a featureOnlineStore can have.
FeatureOnlineStoreName.ResourceNameType
The possible contents of FeatureOnlineStoreName.
FeatureValue.ValueOneofCase
Enum of possible cases for the "value" oneof.
FeatureValueDestination.DestinationOneofCase
Enum of possible cases for the "destination" oneof.
FeatureView.SourceOneofCase
Enum of possible cases for the "source" oneof.
FeatureView.Types.IndexConfig.AlgorithmConfigOneofCase
Enum of possible cases for the "algorithm_config" oneof.
FeatureView.Types.IndexConfig.Types.DistanceMeasureType
The distance measure used in nearest neighbor search.
FeatureView.Types.ServiceAgentType
Service agent type used during data sync.
FeatureView.Types.VectorSearchConfig.AlgorithmConfigOneofCase
Enum of possible cases for the "algorithm_config" oneof.
FeatureView.Types.VectorSearchConfig.Types.DistanceMeasureType
FeatureViewDataFormat
Format of the data in the Feature View.
FeatureViewDataKey.KeyOneofOneofCase
Enum of possible cases for the "key_oneof" oneof.
FeatureViewName.ResourceNameType
The possible contents of FeatureViewName.
FeatureViewSyncName.ResourceNameType
The possible contents of FeatureViewSyncName.
Featurestore.Types.State
Possible states a featurestore can have.
FeaturestoreMonitoringConfig.Types.ImportFeaturesAnalysis.Types.Baseline
Defines the baseline to do anomaly detection for feature values imported by each [ImportFeatureValues][google.cloud.aiplatform.v1beta1.FeaturestoreService.ImportFeatureValues] operation.
FeaturestoreMonitoringConfig.Types.ImportFeaturesAnalysis.Types.State
The state defines whether to enable ImportFeature analysis.
FeaturestoreMonitoringConfig.Types.ThresholdConfig.ThresholdOneofCase
Enum of possible cases for the "threshold" oneof.
FeaturestoreName.ResourceNameType
The possible contents of FeaturestoreName.
FetchFeatureValuesRequest.EntityIdOneofCase
Enum of possible cases for the "entity_id" oneof.
FetchFeatureValuesRequest.Types.Format
Format of the response data.
FetchFeatureValuesResponse.FormatOneofCase
Enum of possible cases for the "format" oneof.
FetchFeatureValuesResponse.Types.FeatureNameValuePairList.Types.FeatureNameValuePair.DataOneofCase
Enum of possible cases for the "data" oneof.
FileStatus.Types.State
RagFile state.
FindNeighborsRequest.Types.Query.RankingOneofCase
Enum of possible cases for the "ranking" oneof.
FunctionCallingConfig.Types.Mode
Function calling mode.
GenerateContentResponse.Types.PromptFeedback.Types.BlockedReason
Blocked reason enumeration.
GenerationConfig.Types.RoutingConfig.RoutingConfigOneofCase
Enum of possible cases for the "routing_config" oneof.
GenerationConfig.Types.RoutingConfig.Types.AutoRoutingMode.Types.ModelRoutingPreference
The model routing preference.
GoogleDriveSource.Types.ResourceId.Types.ResourceType
The type of the Google Drive resource.
GroundingChunk.ChunkTypeOneofCase
Enum of possible cases for the "chunk_type" oneof.
HarmCategory
Harm categories that will block the content.
HttpElementLocation
Enum of location an HTTP element can be.
HyperparameterTuningJobName.ResourceNameType
The possible contents of HyperparameterTuningJobName.
ImportDataConfig.SourceOneofCase
Enum of possible cases for the "source" oneof.
ImportFeatureValuesRequest.FeatureTimeSourceOneofCase
Enum of possible cases for the "feature_time_source" oneof.
ImportFeatureValuesRequest.SourceOneofCase
Enum of possible cases for the "source" oneof.
ImportRagFilesConfig.ImportSourceOneofCase
Enum of possible cases for the "import_source" oneof.
ImportRagFilesConfig.PartialFailureSinkOneofCase
Enum of possible cases for the "partial_failure_sink" oneof.
ImportRagFilesResponse.PartialFailureSinkOneofCase
Enum of possible cases for the "partial_failure_sink" oneof.
Index.Types.IndexUpdateMethod
The update method of an Index.
IndexDatapoint.Types.NumericRestriction.Types.Operator
Which comparison operator to use. Should be specified for queries only; specifying this for a datapoint is an error.
Datapoints for which Operator is true relative to the query's Value field will be allowlisted.
IndexDatapoint.Types.NumericRestriction.ValueOneofCase
Enum of possible cases for the "Value" oneof.
IndexEndpointName.ResourceNameType
The possible contents of IndexEndpointName.
IndexName.ResourceNameType
The possible contents of IndexName.
InputDataConfig.DestinationOneofCase
Enum of possible cases for the "destination" oneof.
InputDataConfig.SplitOneofCase
Enum of possible cases for the "split" oneof.
JobState
Describes the state of a job.
MetadataSchema.Types.MetadataSchemaType
Describes the type of the MetadataSchema.
MetadataSchemaName.ResourceNameType
The possible contents of MetadataSchemaName.
MetadataStoreName.ResourceNameType
The possible contents of MetadataStoreName.
MigratableResource.ResourceOneofCase
Enum of possible cases for the "resource" oneof.
MigrateResourceRequest.RequestOneofCase
Enum of possible cases for the "request" oneof.
MigrateResourceResponse.MigratedResourceOneofCase
Enum of possible cases for the "migrated_resource" oneof.
Model.Types.BaseModelSource.SourceOneofCase
Enum of possible cases for the "source" oneof.
Model.Types.DeploymentResourcesType
Identifies a type of Model's prediction resources.
Model.Types.ExportFormat.Types.ExportableContent
The Model content that can be exported.
ModelDeploymentMonitoringBigQueryTable.Types.LogSource
Indicates where does the log come from.
ModelDeploymentMonitoringBigQueryTable.Types.LogType
Indicates what type of traffic does the log belong to.
ModelDeploymentMonitoringJob.Types.MonitoringScheduleState
The state to Specify the monitoring pipeline.
ModelDeploymentMonitoringJobName.ResourceNameType
The possible contents of ModelDeploymentMonitoringJobName.
ModelDeploymentMonitoringObjectiveType
The Model Monitoring Objective types.
ModelEvaluationName.ResourceNameType
The possible contents of ModelEvaluationName.
ModelEvaluationSlice.Types.Slice.Types.SliceSpec.Types.SliceConfig.KindOneofCase
Enum of possible cases for the "kind" oneof.
ModelEvaluationSlice.Types.Slice.Types.SliceSpec.Types.Value.KindOneofCase
Enum of possible cases for the "kind" oneof.
ModelEvaluationSliceName.ResourceNameType
The possible contents of ModelEvaluationSliceName.
ModelMonitor.DefaultObjectiveOneofCase
Enum of possible cases for the "default_objective" oneof.
ModelMonitor.Types.ModelMonitoringTarget.SourceOneofCase
Enum of possible cases for the "source" oneof.
ModelMonitorName.ResourceNameType
The possible contents of ModelMonitorName.
ModelMonitoringAlertCondition.ConditionOneofCase
Enum of possible cases for the "condition" oneof.
ModelMonitoringAlertConfig.AlertOneofCase
Enum of possible cases for the "alert" oneof.
ModelMonitoringAnomaly.AnomalyOneofCase
Enum of possible cases for the "anomaly" oneof.
ModelMonitoringInput.DatasetOneofCase
Enum of possible cases for the "dataset" oneof.
ModelMonitoringInput.TimeSpecOneofCase
Enum of possible cases for the "time_spec" oneof.
ModelMonitoringInput.Types.ModelMonitoringDataset.DataLocationOneofCase
Enum of possible cases for the "data_location" oneof.
ModelMonitoringInput.Types.ModelMonitoringDataset.Types.ModelMonitoringBigQuerySource.ConnectionOneofCase
Enum of possible cases for the "connection" oneof.
ModelMonitoringInput.Types.ModelMonitoringDataset.Types.ModelMonitoringGcsSource.Types.DataFormat
Supported data format.
ModelMonitoringJobName.ResourceNameType
The possible contents of ModelMonitoringJobName.
ModelMonitoringObjectiveConfig.Types.ExplanationConfig.Types.ExplanationBaseline.DestinationOneofCase
Enum of possible cases for the "destination" oneof.
ModelMonitoringObjectiveConfig.Types.ExplanationConfig.Types.ExplanationBaseline.Types.PredictionFormat
The storage format of the predictions generated BatchPrediction job.
ModelMonitoringObjectiveConfig.Types.TrainingDataset.DataSourceOneofCase
Enum of possible cases for the "data_source" oneof.
ModelMonitoringObjectiveSpec.ObjectiveOneofCase
Enum of possible cases for the "objective" oneof.
ModelMonitoringStats.StatsOneofCase
Enum of possible cases for the "stats" oneof.
ModelMonitoringStatsDataPoint.Types.TypedValue.ValueOneofCase
Enum of possible cases for the "value" oneof.
ModelName.ResourceNameType
The possible contents of ModelName.
ModelSourceInfo.Types.ModelSourceType
Source of the model.
Different from objective
field, this ModelSourceType
enum
indicates the source from which the model was accessed or obtained,
whereas the objective
indicates the overall aim or function of this
model.
NasJobName.ResourceNameType
The possible contents of NasJobName.
NasJobOutput.OutputOneofCase
Enum of possible cases for the "output" oneof.
NasJobSpec.NasAlgorithmSpecOneofCase
Enum of possible cases for the "nas_algorithm_spec" oneof.
NasJobSpec.Types.MultiTrialAlgorithmSpec.Types.MetricSpec.Types.GoalType
The available types of optimization goals.
NasJobSpec.Types.MultiTrialAlgorithmSpec.Types.MultiTrialAlgorithm
The available types of multi-trial algorithms.
NasTrial.Types.State
Describes a NasTrial state.
NasTrialDetailName.ResourceNameType
The possible contents of NasTrialDetailName.
NearestNeighborQuery.InstanceOneofCase
Enum of possible cases for the "instance" oneof.
NearestNeighborQuery.Types.NumericFilter.Types.Operator
Datapoints for which Operator is true relative to the query’s Value field will be allowlisted.
NearestNeighborQuery.Types.NumericFilter.ValueOneofCase
Enum of possible cases for the "Value" oneof.
NearestNeighborSearchOperationMetadata.Types.RecordError.Types.RecordErrorType
NetworkAttachmentName.ResourceNameType
The possible contents of NetworkAttachmentName.
NetworkName.ResourceNameType
The possible contents of NetworkName.
NotebookExecutionJob.EnvironmentSpecOneofCase
Enum of possible cases for the "environment_spec" oneof.
NotebookExecutionJob.ExecutionIdentityOneofCase
Enum of possible cases for the "execution_identity" oneof.
NotebookExecutionJob.ExecutionSinkOneofCase
Enum of possible cases for the "execution_sink" oneof.
NotebookExecutionJob.NotebookSourceOneofCase
Enum of possible cases for the "notebook_source" oneof.
NotebookExecutionJobName.ResourceNameType
The possible contents of NotebookExecutionJobName.
NotebookExecutionJobView
Views for Get/List NotebookExecutionJob
NotebookRuntime.Types.HealthState
The substate of the NotebookRuntime to display health information.
NotebookRuntime.Types.RuntimeState
The substate of the NotebookRuntime to display state of runtime. The resource of NotebookRuntime is in ACTIVE state for these sub state.
NotebookRuntimeName.ResourceNameType
The possible contents of NotebookRuntimeName.
NotebookRuntimeTemplateName.ResourceNameType
The possible contents of NotebookRuntimeTemplateName.
NotebookRuntimeType
Represents a notebook runtime type.
NotificationChannelName.ResourceNameType
The possible contents of NotificationChannelName.
PairwiseChoice
Pairwise prediction autorater preference.
PairwiseMetricInstance.InstanceOneofCase
Enum of possible cases for the "instance" oneof.
Part.DataOneofCase
Enum of possible cases for the "data" oneof.
Part.MetadataOneofCase
Enum of possible cases for the "metadata" oneof.
PersistentResource.Types.State
Describes the PersistentResource state.
PersistentResourceName.ResourceNameType
The possible contents of PersistentResourceName.
PipelineFailurePolicy
Represents the failure policy of a pipeline. Currently, the default of a pipeline is that the pipeline will continue to run until no more tasks can be executed, also known as PIPELINE_FAILURE_POLICY_FAIL_SLOW. However, if a pipeline is set to PIPELINE_FAILURE_POLICY_FAIL_FAST, it will stop scheduling any new tasks when a task has failed. Any scheduled tasks will continue to completion.
PipelineJob.Types.RuntimeConfig.Types.InputArtifact.KindOneofCase
Enum of possible cases for the "kind" oneof.
PipelineJobName.ResourceNameType
The possible contents of PipelineJobName.
PipelineState
Describes the state of a pipeline.
PipelineTaskDetail.Types.State
Specifies state of TaskExecution
PipelineTaskExecutorDetail.DetailsOneofCase
Enum of possible cases for the "details" oneof.
PointwiseMetricInstance.InstanceOneofCase
Enum of possible cases for the "instance" oneof.
PredictLongRunningResponse.ResponseOneofCase
Enum of possible cases for the "response" oneof.
Presets.Types.Modality
Preset option controlling parameters for different modalities
Presets.Types.Query
Preset option controlling parameters for query speed-precision trade-off
Probe.ProbeTypeOneofCase
Enum of possible cases for the "probe_type" oneof.
PublisherModel.Types.CallToAction.Types.Deploy.PredictionResourcesOneofCase
Enum of possible cases for the "prediction_resources" oneof.
PublisherModel.Types.LaunchStage
An enum representing the launch stage of a PublisherModel.
PublisherModel.Types.OpenSourceCategory
An enum representing the open source category of a PublisherModel.
PublisherModel.Types.ResourceReference.ReferenceOneofCase
Enum of possible cases for the "reference" oneof.
PublisherModel.Types.VersionState
An enum representing the state of the PublicModelVersion.
PublisherModelName.ResourceNameType
The possible contents of PublisherModelName.
PublisherModelView
View enumeration of PublisherModel.
RagCorpusName.ResourceNameType
The possible contents of RagCorpusName.
RagEmbeddingModelConfig.ModelConfigOneofCase
Enum of possible cases for the "model_config" oneof.
RagEmbeddingModelConfig.Types.SparseEmbeddingConfig.ModelOneofCase
Enum of possible cases for the "model" oneof.
RagFile.RagFileSourceOneofCase
Enum of possible cases for the "rag_file_source" oneof.
RagFile.Types.RagFileType
The type of the RagFile.
RagFileName.ResourceNameType
The possible contents of RagFileName.
RagQuery.QueryOneofCase
Enum of possible cases for the "query" oneof.
RagVectorDbConfig.VectorDbOneofCase
Enum of possible cases for the "vector_db" oneof.
ReadFeatureValuesResponse.Types.EntityView.Types.Data.DataOneofCase
Enum of possible cases for the "data" oneof.
ReasoningEngineName.ResourceNameType
The possible contents of ReasoningEngineName.
ReservationAffinity.Types.Type
Identifies a type of reservation affinity.
ReservationName.ResourceNameType
The possible contents of ReservationName.
Retrieval.SourceOneofCase
Enum of possible cases for the "source" oneof.
RetrieveContextsRequest.DataSourceOneofCase
Enum of possible cases for the "data_source" oneof.
RuntimeConfig.GoogleFirstPartyExtensionConfigOneofCase
Enum of possible cases for the "GoogleFirstPartyExtensionConfig" oneof.
SafetyRating.Types.HarmProbability
Harm probability levels in the content.
SafetyRating.Types.HarmSeverity
Harm severity levels.
SafetySetting.Types.HarmBlockMethod
Probability vs severity.
SafetySetting.Types.HarmBlockThreshold
Probability based thresholds levels for blocking.
SampleConfig.FollowingBatchSampleSizeOneofCase
Enum of possible cases for the "following_batch_sample_size" oneof.
SampleConfig.InitialBatchSampleSizeOneofCase
Enum of possible cases for the "initial_batch_sample_size" oneof.
SampleConfig.Types.SampleStrategy
Sample strategy decides which subset of DataItems should be selected for human labeling in every batch.
SavedQueryName.ResourceNameType
The possible contents of SavedQueryName.
Schedule.RequestOneofCase
Enum of possible cases for the "request" oneof.
Schedule.TimeSpecificationOneofCase
Enum of possible cases for the "time_specification" oneof.
Schedule.Types.State
Possible state of the schedule.
ScheduleName.ResourceNameType
The possible contents of ScheduleName.
Scheduling.Types.Strategy
Optional. This determines which type of scheduling strategy to use. Right now users have two options such as STANDARD which will use regular on demand resources to schedule the job, the other is SPOT which would leverage spot resources alongwith regular resources to schedule the job.
SearchDataItemsRequest.OrderOneofCase
Enum of possible cases for the "order" oneof.
SearchModelMonitoringStatsFilter.FilterOneofCase
Enum of possible cases for the "filter" oneof.
SecretVersionName.ResourceNameType
The possible contents of SecretVersionName.
ServiceName.ResourceNameType
The possible contents of ServiceName.
SharePointSources.Types.SharePointSource.DriveSourceOneofCase
Enum of possible cases for the "drive_source" oneof.
SharePointSources.Types.SharePointSource.FolderSourceOneofCase
Enum of possible cases for the "folder_source" oneof.
SmoothGradConfig.GradientNoiseSigmaOneofCase
Enum of possible cases for the "GradientNoiseSigma" oneof.
SpecialistPoolName.ResourceNameType
The possible contents of SpecialistPoolName.
Study.Types.State
Describes the Study state.
StudyName.ResourceNameType
The possible contents of StudyName.
StudySpec.AutomatedStoppingSpecOneofCase
Enum of possible cases for the "automated_stopping_spec" oneof.
StudySpec.Types.Algorithm
The available search algorithms for the Study.
StudySpec.Types.MeasurementSelectionType
This indicates which measurement to use if/when the service automatically selects the final measurement from previously reported intermediate measurements. Choose this based on two considerations: A) Do you expect your measurements to monotonically improve? If so, choose LAST_MEASUREMENT. On the other hand, if you're in a situation where your system can "over-train" and you expect the performance to get better for a while but then start declining, choose BEST_MEASUREMENT. B) Are your measurements significantly noisy and/or irreproducible? If so, BEST_MEASUREMENT will tend to be over-optimistic, and it may be better to choose LAST_MEASUREMENT. If both or neither of (A) and (B) apply, it doesn't matter which selection type is chosen.
StudySpec.Types.MetricSpec.Types.GoalType
The available types of optimization goals.
StudySpec.Types.ObservationNoise
Describes the noise level of the repeated observations.
"Noisy" means that the repeated observations with the same Trial parameters may lead to different metric evaluations.
StudySpec.Types.ParameterSpec.ParameterValueSpecOneofCase
Enum of possible cases for the "parameter_value_spec" oneof.
StudySpec.Types.ParameterSpec.Types.ConditionalParameterSpec.ParentValueConditionOneofCase
Enum of possible cases for the "parent_value_condition" oneof.
StudySpec.Types.ParameterSpec.Types.ScaleType
The type of scaling that should be applied to this parameter.
StudyTimeConstraint.ConstraintOneofCase
Enum of possible cases for the "constraint" oneof.
SubnetworkName.ResourceNameType
The possible contents of SubnetworkName.
SupervisedHyperParameters.Types.AdapterSize
Supported adapter sizes for tuning.
Tensor.Types.DataType
Data type of the tensor.
TensorboardExperimentName.ResourceNameType
The possible contents of TensorboardExperimentName.
TensorboardName.ResourceNameType
The possible contents of TensorboardName.
TensorboardRunName.ResourceNameType
The possible contents of TensorboardRunName.
TensorboardTimeSeries.Types.ValueType
An enum representing the value type of a TensorboardTimeSeries.
TensorboardTimeSeriesName.ResourceNameType
The possible contents of TensorboardTimeSeriesName.
ThresholdConfig.ThresholdOneofCase
Enum of possible cases for the "threshold" oneof.
TimeSeriesDataPoint.ValueOneofCase
Enum of possible cases for the "value" oneof.
ToolUseExample.TargetOneofCase
Enum of possible cases for the "Target" oneof.
TrainingPipelineName.ResourceNameType
The possible contents of TrainingPipelineName.
Trial.Types.State
Describes a Trial state.
TrialName.ResourceNameType
The possible contents of TrialName.
TunedModelRef.TunedModelRefOneofCase
Enum of possible cases for the "tuned_model_ref" oneof.
TuningDataStats.TuningDataStatsOneofCase
Enum of possible cases for the "tuning_data_stats" oneof.
TuningJob.SourceModelOneofCase
Enum of possible cases for the "source_model" oneof.
TuningJob.TuningSpecOneofCase
Enum of possible cases for the "tuning_spec" oneof.
TuningJobName.ResourceNameType
The possible contents of TuningJobName.
Type
Type contains the list of OpenAPI data types as defined by https://swagger.io/docs/specification/data-models/data-types/
UploadRagFileResponse.ResultOneofCase
Enum of possible cases for the "result" oneof.
UserActionReference.ReferenceOneofCase
Enum of possible cases for the "reference" oneof.
Value.ValueOneofCase
Enum of possible cases for the "value" oneof.
VersionName.ResourceNameType
The possible contents of VersionName.
WorkerPoolSpec.TaskOneofCase
Enum of possible cases for the "task" oneof.