- 3.14.0 (latest)
- 3.13.0
- 3.12.0
- 3.11.0
- 3.10.0
- 3.9.0
- 3.8.0
- 3.7.0
- 3.6.0
- 3.5.0
- 3.4.0
- 3.3.0
- 3.2.0
- 3.1.0
- 3.0.0
- 2.28.0
- 2.27.0
- 2.26.0
- 2.25.0
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 2.1.0
- 2.0.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
public sealed class ActiveLearningConfig : IMessage<ActiveLearningConfig>, IEquatable<ActiveLearningConfig>, IDeepCloneable<ActiveLearningConfig>, IBufferMessage, IMessage
Reference documentation and code samples for the Cloud AI Platform v1 API class ActiveLearningConfig.
Parameters that configure the active learning pipeline. Active learning will label the data incrementally by several iterations. For every iteration, it will select a batch of data based on the sampling strategy.
Implements
IMessage<ActiveLearningConfig>, IEquatable<ActiveLearningConfig>, IDeepCloneable<ActiveLearningConfig>, IBufferMessage, IMessageNamespace
Google.Cloud.AIPlatform.V1Assembly
Google.Cloud.AIPlatform.V1.dll
Constructors
ActiveLearningConfig()
public ActiveLearningConfig()
ActiveLearningConfig(ActiveLearningConfig)
public ActiveLearningConfig(ActiveLearningConfig other)
Parameter | |
---|---|
Name | Description |
other | ActiveLearningConfig |
Properties
HumanLabelingBudgetCase
public ActiveLearningConfig.HumanLabelingBudgetOneofCase HumanLabelingBudgetCase { get; }
Property Value | |
---|---|
Type | Description |
ActiveLearningConfig.HumanLabelingBudgetOneofCase |
MaxDataItemCount
public long MaxDataItemCount { get; set; }
Max number of human labeled DataItems.
Property Value | |
---|---|
Type | Description |
Int64 |
MaxDataItemPercentage
public int MaxDataItemPercentage { get; set; }
Max percent of total DataItems for human labeling.
Property Value | |
---|---|
Type | Description |
Int32 |
SampleConfig
public SampleConfig SampleConfig { get; set; }
Active learning data sampling config. For every active learning labeling iteration, it will select a batch of data based on the sampling strategy.
Property Value | |
---|---|
Type | Description |
SampleConfig |
TrainingConfig
public TrainingConfig TrainingConfig { get; set; }
CMLE training config. For every active learning labeling iteration, system will train a machine learning model on CMLE. The trained model will be used by data sampling algorithm to select DataItems.
Property Value | |
---|---|
Type | Description |
TrainingConfig |