- 3.14.0 (latest)
- 3.13.0
- 3.12.0
- 3.11.0
- 3.10.0
- 3.9.0
- 3.8.0
- 3.7.0
- 3.6.0
- 3.5.0
- 3.4.0
- 3.3.0
- 3.2.0
- 3.1.0
- 3.0.0
- 2.28.0
- 2.27.0
- 2.26.0
- 2.25.0
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 2.1.0
- 2.0.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
public sealed class ActiveLearningConfig : IMessage<ActiveLearningConfig>, IEquatable<ActiveLearningConfig>, IDeepCloneable<ActiveLearningConfig>, IBufferMessage, IMessage
Parameters that configure the active learning pipeline. Active learning will label the data incrementally by several iterations. For every iteration, it will select a batch of data based on the sampling strategy.
Implements
IMessage<ActiveLearningConfig>, IEquatable<ActiveLearningConfig>, IDeepCloneable<ActiveLearningConfig>, IBufferMessage, IMessageNamespace
Google.Cloud.AIPlatform.V1Assembly
Google.Cloud.AIPlatform.V1.dll
Constructors
ActiveLearningConfig()
public ActiveLearningConfig()
ActiveLearningConfig(ActiveLearningConfig)
public ActiveLearningConfig(ActiveLearningConfig other)
Parameter | |
---|---|
Name | Description |
other | ActiveLearningConfig |
Properties
HumanLabelingBudgetCase
public ActiveLearningConfig.HumanLabelingBudgetOneofCase HumanLabelingBudgetCase { get; }
Property Value | |
---|---|
Type | Description |
ActiveLearningConfig.HumanLabelingBudgetOneofCase |
MaxDataItemCount
public long MaxDataItemCount { get; set; }
Max number of human labeled DataItems.
Property Value | |
---|---|
Type | Description |
Int64 |
MaxDataItemPercentage
public int MaxDataItemPercentage { get; set; }
Max percent of total DataItems for human labeling.
Property Value | |
---|---|
Type | Description |
Int32 |
SampleConfig
public SampleConfig SampleConfig { get; set; }
Active learning data sampling config. For every active learning labeling iteration, it will select a batch of data based on the sampling strategy.
Property Value | |
---|---|
Type | Description |
SampleConfig |
TrainingConfig
public TrainingConfig TrainingConfig { get; set; }
CMLE training config. For every active learning labeling iteration, system will train a machine learning model on CMLE. The trained model will be used by data sampling algorithm to select DataItems.
Property Value | |
---|---|
Type | Description |
TrainingConfig |