クラスタの更新

このサンプルでは、Python クライアント ライブラリを使用して Cloud Dataproc クラスタを更新する手順について説明します。

コードサンプル

Python

このサンプルを試す前に、Dataproc クイックスタート: クライアント ライブラリの使用にある Python の設定手順を行ってください。 詳細については、Dataproc Python API のリファレンス ドキュメントをご覧ください。

Dataproc への認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

from google.cloud import dataproc_v1 as dataproc


def update_cluster(project_id, region, cluster_name, new_num_instances):
    """This sample walks a user through updating a Cloud Dataproc cluster
    using the Python client library.

    Args:
        project_id (str): Project to use for creating resources.
        region (str): Region where the resources should live.
        cluster_name (str): Name to use for creating a cluster.
    """

    # Create a client with the endpoint set to the desired cluster region.
    client = dataproc.ClusterControllerClient(
        client_options={"api_endpoint": f"{region}-dataproc.googleapis.com:443"}
    )

    # Get cluster you wish to update.
    cluster = client.get_cluster(
        project_id=project_id, region=region, cluster_name=cluster_name
    )

    # Update number of clusters
    mask = {"paths": {"config.worker_config.num_instances": str(new_num_instances)}}

    # Update cluster config
    cluster.config.worker_config.num_instances = new_num_instances

    # Update cluster
    operation = client.update_cluster(
        project_id=project_id,
        region=region,
        cluster=cluster,
        cluster_name=cluster_name,
        update_mask=mask,
    )

    # Output a success message.
    updated_cluster = operation.result()
    print(f"Cluster was updated successfully: {updated_cluster.cluster_name}")

次のステップ

他の Google Cloud プロダクトに関連するコードサンプルの検索およびフィルタ検索を行うには、Google Cloud のサンプルをご覧ください。