Job senden

Sendet einen Spark-Job an einen Dataproc-Cluster.

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

Go

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Einrichtungsanleitung für Go in der Dataproc-Schnellstart mit Clientbibliotheken. Weitere Informationen finden Sie in der Dataproc Go API Referenzdokumentation.

Richten Sie die Standardanmeldedaten für Anwendungen ein, um sich bei Dataproc zu authentifizieren. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import (
	"context"
	"fmt"
	"io"
	"io/ioutil"
	"log"
	"regexp"

	dataproc "cloud.google.com/go/dataproc/apiv1"
	"cloud.google.com/go/dataproc/apiv1/dataprocpb"
	"cloud.google.com/go/storage"
	"google.golang.org/api/option"
)

func submitJob(w io.Writer, projectID, region, clusterName string) error {
	// projectID := "your-project-id"
	// region := "us-central1"
	// clusterName := "your-cluster"
	ctx := context.Background()

	// Create the job client.
	endpoint := fmt.Sprintf("%s-dataproc.googleapis.com:443", region)
	jobClient, err := dataproc.NewJobControllerClient(ctx, option.WithEndpoint(endpoint))
	if err != nil {
		log.Fatalf("error creating the job client: %s\n", err)
	}

	// Create the job config.
	submitJobReq := &dataprocpb.SubmitJobRequest{
		ProjectId: projectID,
		Region:    region,
		Job: &dataprocpb.Job{
			Placement: &dataprocpb.JobPlacement{
				ClusterName: clusterName,
			},
			TypeJob: &dataprocpb.Job_SparkJob{
				SparkJob: &dataprocpb.SparkJob{
					Driver: &dataprocpb.SparkJob_MainClass{
						MainClass: "org.apache.spark.examples.SparkPi",
					},
					JarFileUris: []string{"file:///usr/lib/spark/examples/jars/spark-examples.jar"},
					Args:        []string{"1000"},
				},
			},
		},
	}

	submitJobOp, err := jobClient.SubmitJobAsOperation(ctx, submitJobReq)
	if err != nil {
		return fmt.Errorf("error with request to submitting job: %w", err)
	}

	submitJobResp, err := submitJobOp.Wait(ctx)
	if err != nil {
		return fmt.Errorf("error submitting job: %w", err)
	}

	re := regexp.MustCompile("gs://(.+?)/(.+)")
	matches := re.FindStringSubmatch(submitJobResp.DriverOutputResourceUri)

	if len(matches) < 3 {
		return fmt.Errorf("regex error: %s", submitJobResp.DriverOutputResourceUri)
	}

	// Dataproc job output gets saved to a GCS bucket allocated to it.
	storageClient, err := storage.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("error creating storage client: %w", err)
	}

	obj := fmt.Sprintf("%s.000000000", matches[2])
	reader, err := storageClient.Bucket(matches[1]).Object(obj).NewReader(ctx)
	if err != nil {
		return fmt.Errorf("error reading job output: %w", err)
	}

	defer reader.Close()

	body, err := ioutil.ReadAll(reader)
	if err != nil {
		return fmt.Errorf("could not read output from Dataproc Job: %w", err)
	}

	fmt.Fprintf(w, "Job finished successfully: %s", body)

	return nil
}

Java

Folgen Sie der Einrichtungsanleitung für Java in der Dataproc-Kurzanleitung zur Verwendung von Clientbibliotheken, bevor Sie dieses Beispiel anwenden. Weitere Informationen finden Sie in der Referenzdokumentation zur Dataproc Java API.

Richten Sie Standardanmeldedaten für Anwendungen ein, um sich bei Dataproc zu authentifizieren. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.dataproc.v1.Job;
import com.google.cloud.dataproc.v1.JobControllerClient;
import com.google.cloud.dataproc.v1.JobControllerSettings;
import com.google.cloud.dataproc.v1.JobMetadata;
import com.google.cloud.dataproc.v1.JobPlacement;
import com.google.cloud.dataproc.v1.SparkJob;
import com.google.cloud.storage.Blob;
import com.google.cloud.storage.Storage;
import com.google.cloud.storage.StorageOptions;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class SubmitJob {

  public static void submitJob() throws IOException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String region = "your-project-region";
    String clusterName = "your-cluster-name";
    submitJob(projectId, region, clusterName);
  }

  public static void submitJob(String projectId, String region, String clusterName)
      throws IOException, InterruptedException {
    String myEndpoint = String.format("%s-dataproc.googleapis.com:443", region);

    // Configure the settings for the job controller client.
    JobControllerSettings jobControllerSettings =
        JobControllerSettings.newBuilder().setEndpoint(myEndpoint).build();

    // Create a job controller client with the configured settings. Using a try-with-resources
    // closes the client,
    // but this can also be done manually with the .close() method.
    try (JobControllerClient jobControllerClient =
        JobControllerClient.create(jobControllerSettings)) {

      // Configure cluster placement for the job.
      JobPlacement jobPlacement = JobPlacement.newBuilder().setClusterName(clusterName).build();

      // Configure Spark job settings.
      SparkJob sparkJob =
          SparkJob.newBuilder()
              .setMainClass("org.apache.spark.examples.SparkPi")
              .addJarFileUris("file:///usr/lib/spark/examples/jars/spark-examples.jar")
              .addArgs("1000")
              .build();

      Job job = Job.newBuilder().setPlacement(jobPlacement).setSparkJob(sparkJob).build();

      // Submit an asynchronous request to execute the job.
      OperationFuture<Job, JobMetadata> submitJobAsOperationAsyncRequest =
          jobControllerClient.submitJobAsOperationAsync(projectId, region, job);

      Job response = submitJobAsOperationAsyncRequest.get();

      // Print output from Google Cloud Storage.
      Matcher matches =
          Pattern.compile("gs://(.*?)/(.*)").matcher(response.getDriverOutputResourceUri());
      matches.matches();

      Storage storage = StorageOptions.getDefaultInstance().getService();
      Blob blob = storage.get(matches.group(1), String.format("%s.000000000", matches.group(2)));

      System.out.println(
          String.format("Job finished successfully: %s", new String(blob.getContent())));

    } catch (ExecutionException e) {
      // If the job does not complete successfully, print the error message.
      System.err.println(String.format("submitJob: %s ", e.getMessage()));
    }
  }
}

Node.js

Folgen Sie der Einrichtungsanleitung für Node.js in der Dataproc-Kurzanleitung zur Verwendung von Clientbibliotheken, bevor Sie dieses Beispiel anwenden. Weitere Informationen finden Sie in der Referenzdokumentation zur Dataproc Node.js API.

Richten Sie Standardanmeldedaten für Anwendungen ein, um sich bei Dataproc zu authentifizieren. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

const dataproc = require('@google-cloud/dataproc');
const {Storage} = require('@google-cloud/storage');

// TODO(developer): Uncomment and set the following variables
// projectId = 'YOUR_PROJECT_ID'
// region = 'YOUR_CLUSTER_REGION'
// clusterName = 'YOUR_CLUSTER_NAME'

// Create a client with the endpoint set to the desired cluster region
const jobClient = new dataproc.v1.JobControllerClient({
  apiEndpoint: `${region}-dataproc.googleapis.com`,
  projectId: projectId,
});

async function submitJob() {
  const job = {
    projectId: projectId,
    region: region,
    job: {
      placement: {
        clusterName: clusterName,
      },
      sparkJob: {
        mainClass: 'org.apache.spark.examples.SparkPi',
        jarFileUris: [
          'file:///usr/lib/spark/examples/jars/spark-examples.jar',
        ],
        args: ['1000'],
      },
    },
  };

  const [jobOperation] = await jobClient.submitJobAsOperation(job);
  const [jobResponse] = await jobOperation.promise();

  const matches =
    jobResponse.driverOutputResourceUri.match('gs://(.*?)/(.*)');

  const storage = new Storage();

  const output = await storage
    .bucket(matches[1])
    .file(`${matches[2]}.000000000`)
    .download();

  // Output a success message.
  console.log(`Job finished successfully: ${output}`);

Python

Folgen Sie der Einrichtungsanleitung für Python in der Dataproc-Kurzanleitung zur Verwendung von Clientbibliotheken, bevor Sie dieses Beispiel anwenden. Weitere Informationen finden Sie in der Referenzdokumentation zur Dataproc Python API.

Richten Sie Standardanmeldedaten für Anwendungen ein, um sich bei Dataproc zu authentifizieren. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

# Create the job client.
job_client = dataproc_v1.JobControllerClient(
    client_options={"api_endpoint": f"{region}-dataproc.googleapis.com:443"}
)

# Create the job config.
job = {
    "placement": {"cluster_name": cluster_name},
    "pyspark_job": {"main_python_file_uri": f"gs://{gcs_bucket}/{spark_filename}"},
}

operation = job_client.submit_job_as_operation(
    request={"project_id": project_id, "region": region, "job": job}
)
response = operation.result()

# Dataproc job output is saved to the Cloud Storage bucket
# allocated to the job. Use regex to obtain the bucket and blob info.
matches = re.match("gs://(.*?)/(.*)", response.driver_output_resource_uri)

output = (
    storage.Client()
    .get_bucket(matches.group(1))
    .blob(f"{matches.group(2)}.000000000")
    .download_as_bytes()
    .decode("utf-8")
)

print(f"Job finished successfully: {output}\r\n")

Nächste Schritte

Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud-Produkte finden Sie im Google Cloud-Beispielbrowser.