Modelo do Cloud Storage para o Cloud Spanner

Use o modelo Serverless for Apache Spark Cloud Storage to Spanner para extrair dados do Cloud Storage para o Spanner.

Use o modelo

Execute o modelo através da CLI gcloud ou da API Dataproc.

gcloud

Antes de usar qualquer um dos dados de comandos abaixo, faça as seguintes substituições:

  • PROJECT_ID: obrigatório. O seu Google Cloud ID do projeto indicado nas definições de IAM.
  • REGION: obrigatório. Região do Compute Engine.
  • SUBNET: opcional. Se não for especificada uma sub-rede, é selecionada a sub-rede na REGIÃO especificada na rede default.

    Exemplo: projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME

  • TEMPLATE_VERSION: obrigatório. Especifique latest para a versão mais recente do modelo ou a data de uma versão específica, por exemplo, 2023-03-17_v0.1.0-beta (visite gs://dataproc-templates-binaries ou execute gcloud storage ls gs://dataproc-templates-binaries para listar as versões de modelos disponíveis).
  • CLOUD_STORAGE_INPUT_PATH: obrigatório. Caminho do Cloud Storage a partir do qual os dados de entrada vão ser lidos.

    Exemplo: gs://example-bucket/example-folder/

  • FORMAT: obrigatório. Formato dos dados de entrada. Opções: avro, parquet ou orc. Nota: se avro, tem de adicionar "file:///usr/lib/spark/connector/spark-avro.jar" à flag da CLI gcloud jars ou ao campo da API.

    Exemplo (o prefixo file:// faz referência a um ficheiro JAR do Serverless para Apache Spark):

    --jars=file:///usr/lib/spark/connector/spark-avro.jar, [ ... other jars]
  • INSTANCE: obrigatório. ID da instância do Spanner.
  • DATABASE: obrigatório. ID da base de dados do Spanner.
  • TABLE: obrigatório. Nome da tabela de saída do Spanner.
  • SPANNER_JDBC_DIALECT: obrigatório. Dialeto JDBC do Spanner. Opções: googlesql ou postgresql. A predefinição é googlesql.
  • MODE: opcional. Modo de escrita para saída do Spanner. Opções: Append, Overwrite, Ignore ou ErrorifExists. A predefinição é ErrorifExists.
  • PRIMARY_KEY: obrigatório. Colunas de chave principal separadas por vírgulas necessárias ao criar a tabela de saída do Spanner.
  • BATCHSIZE: opcional. Número de registos a inserir numa viagem de ida e volta na tabela do Spanner. A predefinição é 1000.
  • SERVICE_ACCOUNT: opcional. Se não for fornecida, é usada a conta de serviço predefinida do Compute Engine.
  • PROPERTY e PROPERTY_VALUE: Opcional. Lista separada por vírgulas de pares propriedade do Spark=value.
  • LABEL e LABEL_VALUE: Opcional. Lista de pares label=value separados por vírgulas.
  • LOG_LEVEL: opcional. Nível de registo. Pode ser um dos seguintes: ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE ou WARN. Predefinição: INFO.
  • KMS_KEY: opcional. A chave do Cloud Key Management Service a usar para encriptação. Se não for especificada uma chave, os dados são encriptados em repouso através de uma Google-owned and Google-managed encryption key.

    Exemplo: projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME

Execute o seguinte comando:

Linux, macOS ou Cloud Shell

gcloud dataproc batches submit spark \
    --class=com.google.cloud.dataproc.templates.main.DataProcTemplate \
    --version="1.2" \
    --project="PROJECT_ID" \
    --region="REGION" \
    --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar" \
    --subnet="SUBNET" \
    --kms-key="KMS_KEY" \
    --service-account="SERVICE_ACCOUNT" \
    --properties="PROPERTY=PROPERTY_VALUE" \
    --labels="LABEL=LABEL_VALUE" \
    -- --template GCSTOSPANNER \
    --templateProperty log.level="LOG_LEVEL" \
    --templateProperty project.id="PROJECT_ID" \
    --templateProperty gcs.spanner.input.format="FORMAT" \
    --templateProperty gcs.spanner.input.location="CLOUD_STORAGE_INPUT_PATH" \
    --templateProperty gcs.spanner.output.instance="INSTANCE" \
    --templateProperty gcs.spanner.output.database="DATABASE" \
    --templateProperty gcs.spanner.output.table="TABLE" \
    --templateProperty gcs.spanner.output.saveMode="MODE" \
    --templateProperty gcs.spanner.output.primaryKey="PRIMARY_KEY" \
    --templateProperty gcs.spanner.output.batchInsertSize="BATCHSIZE" \
    --templateProperty spanner.jdbc.dialect="SPANNER_JDBC_DIALECT"

Windows (PowerShell)

gcloud dataproc batches submit spark `
    --class=com.google.cloud.dataproc.templates.main.DataProcTemplate `
    --version="1.2" `
    --project="PROJECT_ID" `
    --region="REGION" `
    --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar" `
    --subnet="SUBNET" `
    --kms-key="KMS_KEY" `
    --service-account="SERVICE_ACCOUNT" `
    --properties="PROPERTY=PROPERTY_VALUE" `
    --labels="LABEL=LABEL_VALUE" `
    -- --template GCSTOSPANNER `
    --templateProperty log.level="LOG_LEVEL" `
    --templateProperty project.id="PROJECT_ID" `
    --templateProperty gcs.spanner.input.format="FORMAT" `
    --templateProperty gcs.spanner.input.location="CLOUD_STORAGE_INPUT_PATH" `
    --templateProperty gcs.spanner.output.instance="INSTANCE" `
    --templateProperty gcs.spanner.output.database="DATABASE" `
    --templateProperty gcs.spanner.output.table="TABLE" `
    --templateProperty gcs.spanner.output.saveMode="MODE" `
    --templateProperty gcs.spanner.output.primaryKey="PRIMARY_KEY" `
    --templateProperty gcs.spanner.output.batchInsertSize="BATCHSIZE" `
    --templateProperty spanner.jdbc.dialect="SPANNER_JDBC_DIALECT"

Windows (cmd.exe)

gcloud dataproc batches submit spark ^
    --class=com.google.cloud.dataproc.templates.main.DataProcTemplate ^
    --version="1.2" ^
    --project="PROJECT_ID" ^
    --region="REGION" ^
    --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar" ^
    --subnet="SUBNET" ^
    --kms-key="KMS_KEY" ^
    --service-account="SERVICE_ACCOUNT" ^
    --properties="PROPERTY=PROPERTY_VALUE" ^
    --labels="LABEL=LABEL_VALUE" ^
    -- --template GCSTOSPANNER ^
    --templateProperty log.level="LOG_LEVEL" ^
    --templateProperty project.id="PROJECT_ID" ^
    --templateProperty gcs.spanner.input.format="FORMAT" ^
    --templateProperty gcs.spanner.input.location="CLOUD_STORAGE_INPUT_PATH" ^
    --templateProperty gcs.spanner.output.instance="INSTANCE" ^
    --templateProperty gcs.spanner.output.database="DATABASE" ^
    --templateProperty gcs.spanner.output.table="TABLE" ^
    --templateProperty gcs.spanner.output.saveMode="MODE" ^
    --templateProperty gcs.spanner.output.primaryKey="PRIMARY_KEY" ^
    --templateProperty gcs.spanner.output.batchInsertSize="BATCHSIZE" ^
    --templateProperty spanner.jdbc.dialect="SPANNER_JDBC_DIALECT"

REST

Antes de usar qualquer um dos dados do pedido, faça as seguintes substituições:

  • PROJECT_ID: obrigatório. O seu Google Cloud ID do projeto indicado nas definições de IAM.
  • REGION: obrigatório. Região do Compute Engine.
  • SUBNET: opcional. Se não for especificada uma sub-rede, é selecionada a sub-rede na REGIÃO especificada na rede default.

    Exemplo: projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME

  • TEMPLATE_VERSION: obrigatório. Especifique latest para a versão mais recente do modelo ou a data de uma versão específica, por exemplo, 2023-03-17_v0.1.0-beta (visite gs://dataproc-templates-binaries ou execute gcloud storage ls gs://dataproc-templates-binaries para listar as versões de modelos disponíveis).
  • CLOUD_STORAGE_INPUT_PATH: obrigatório. Caminho do Cloud Storage a partir do qual os dados de entrada vão ser lidos.

    Exemplo: gs://example-bucket/example-folder/

  • FORMAT: obrigatório. Formato dos dados de entrada. Opções: avro, parquet ou orc. Nota: se avro, tem de adicionar "file:///usr/lib/spark/connector/spark-avro.jar" à flag da CLI gcloud jars ou ao campo da API.

    Exemplo (o prefixo file:// faz referência a um ficheiro JAR do Serverless para Apache Spark):

    --jars=file:///usr/lib/spark/connector/spark-avro.jar, [ ... other jars]
  • INSTANCE: obrigatório. ID da instância do Spanner.
  • DATABASE: obrigatório. ID da base de dados do Spanner.
  • TABLE: obrigatório. Nome da tabela de saída do Spanner.
  • SPANNER_JDBC_DIALECT: obrigatório. Dialeto JDBC do Spanner. Opções: googlesql ou postgresql. A predefinição é googlesql.
  • MODE: opcional. Modo de escrita para saída do Spanner. Opções: Append, Overwrite, Ignore ou ErrorifExists. A predefinição é ErrorifExists.
  • PRIMARY_KEY: obrigatório. Colunas de chave principal separadas por vírgulas necessárias ao criar a tabela de saída do Spanner.
  • BATCHSIZE: opcional. Número de registos a inserir numa viagem de ida e volta na tabela do Spanner. A predefinição é 1000.
  • SERVICE_ACCOUNT: opcional. Se não for fornecida, é usada a conta de serviço predefinida do Compute Engine.
  • PROPERTY e PROPERTY_VALUE: Opcional. Lista separada por vírgulas de pares propriedade do Spark=value.
  • LABEL e LABEL_VALUE: Opcional. Lista de pares label=value separados por vírgulas.
  • LOG_LEVEL: opcional. Nível de registo. Pode ser um dos seguintes: ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE ou WARN. Predefinição: INFO.
  • KMS_KEY: opcional. A chave do Cloud Key Management Service a usar para encriptação. Se não for especificada uma chave, os dados são encriptados em repouso através de uma Google-owned and Google-managed encryption key.

    Exemplo: projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME

Método HTTP e URL:

POST https://dataproc.googleapis.com/v1/projects/PROJECT_ID/locations/REGION/batches

Corpo JSON do pedido:


{
  "environmentConfig":{
    "executionConfig":{
      "subnetworkUri":"SUBNET",
      "kmsKey": "KMS_KEY",
      "serviceAccount": "SERVICE_ACCOUNT"
    }
  },
  "labels": {
    "LABEL": "LABEL_VALUE"
  },
  "runtimeConfig": {
    "version": "1.2",
    "properties": {
      "PROPERTY": "PROPERTY_VALUE"
    }
  },
  "sparkBatch": {
    "mainClass": "com.google.cloud.dataproc.templates.main.DataProcTemplate",
    "args": [
      "--template","GCSTOSPANNER",
      "--templateProperty","project.id=PROJECT_ID",
      "--templateProperty","log.level=LOG_LEVEL",
      "--templateProperty","gcs.spanner.input.format=FORMAT",
      "--templateProperty","gcs.spanner.input.location=CLOUD_STORAGE_INPUT_PATH",
      "--templateProperty","gcs.spanner.output.instance=INSTANCE",
      "--templateProperty","gcs.spanner.output.database=DATABASE",
      "--templateProperty","gcs.spanner.output.table=TABLE",
      "--templateProperty","gcs.spanner.output.saveMode=MODE",
      "--templateProperty","gcs.spanner.output.primaryKey=PRIMARY_KEY",
      "--templateProperty","gcs.spanner.output.batchInsertSize=BATCHSIZE",
      "--templateProperty spanner.jdbc.dialect=SPANNER_JDBC_DIALECT"
    ],
    "jarFileUris":[
      "gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar"
    ]
  }
}

Para enviar o seu pedido, expanda uma destas opções:

Deve receber uma resposta JSON semelhante à seguinte:


{
  "name": "projects/PROJECT_ID/regions/REGION/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.dataproc.v1.BatchOperationMetadata",
    "batch": "projects/PROJECT_ID/locations/REGION/batches/BATCH_ID",
    "batchUuid": "de8af8d4-3599-4a7c-915c-798201ed1583",
    "createTime": "2023-02-24T03:31:03.440329Z",
    "operationType": "BATCH",
    "description": "Batch"
  }
}