Non compatible depuis le 03/02/2023. 1.0.29 est la dernière version.
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/09/04 (UTC).
[[["Facile à comprendre","easyToUnderstand","thumb-up"],["J'ai pu résoudre mon problème","solvedMyProblem","thumb-up"],["Autre","otherUp","thumb-up"]],[["Difficile à comprendre","hardToUnderstand","thumb-down"],["Informations ou exemple de code incorrects","incorrectInformationOrSampleCode","thumb-down"],["Il n'y a pas l'information/les exemples dont j'ai besoin","missingTheInformationSamplesINeed","thumb-down"],["Problème de traduction","translationIssue","thumb-down"],["Autre","otherDown","thumb-down"]],["Dernière mise à jour le 2025/09/04 (UTC)."],[[["\u003cp\u003eDataproc Serverless LTS runtime versions are supported for 30 months, while non-LTS versions are supported for 12 months.\u003c/p\u003e\n"],["\u003cp\u003eAll Dataproc Serverless runtime versions remain available for two years following their end-of-support date.\u003c/p\u003e\n"],["\u003cp\u003eThe current default Dataproc Serverless runtime version can be found in the "Supported Dataproc Serverless for Spark runtime versions" section.\u003c/p\u003e\n"],["\u003cp\u003eYou can select a different Dataproc Serverless runtime version when submitting a batch workload using the Google Cloud console, gcloud CLI, or the Dataproc API.\u003c/p\u003e\n"],["\u003cp\u003eDataproc Serverless for Spark runtime versions \u003ccode\u003e1.2\u003c/code\u003e and \u003ccode\u003e2.1+\u003c/code\u003e do not offer subminor version pinning.\u003c/p\u003e\n"]]],[],null,["# Serverless for Apache Spark runtime versions\n\n| **Dataproc Serverless** is now **Google Cloud Serverless for Apache Spark**. Until updated, some documents will refer to the previous name.\n\n\u003cbr /\u003e\n\n| - Serverless for Apache Spark LTS (Long-Time-Support) runtime versions are supported for 30 months. Serverless for Apache Spark non-LTS runtime versions are supported for 12 months.\n| - Serverless for Apache Spark runtime versions continue to be available for two years after their end-of-support date.\n| - **For runtime version `1.1` only** : You can specify a `major.minor.subminor` version for a batch workload or interactive session within one year of a `1.1` subminor release. The workload or session will fail if submitted after one-year from the release of the specified subminor runtime version. Other Serverless for Apache Spark runtime versions don't support subminor version pinning.\n\nSupported Serverless for Apache Spark runtime versions\n------------------------------------------------------\n\n### How to choose a Serverless for Apache Spark runtime version\n\nThe current default Serverless for Apache Spark runtime version is listed in\n[Supported Serverless for Apache Spark runtime versions](#supported-dataproc-serverless-for-spark-runtime-versions).\nYou can choose a different `major.minor` runtime version when you\n[submit a batch workload](/dataproc-serverless/docs/quickstarts/spark-batch#submit_a_spark_batch_workload)\nor [create a interactive session](/dataproc-serverless/docs/guides/create-serverless-sessions-templates#create-an-interactive-session)\nor [session template](/dataproc-serverless/docs/guides/create-serverless-sessions-templates#create-a-session-template).\n\nUnsupported Serverless for Apache Spark runtime versions\n--------------------------------------------------------\n\nThe following Serverless for Apache Spark versions are unsupported."]]