Modello di testo Cloud Storage in BigQuery (flusso)

La pipeline Testo di Cloud Storage in BigQuery è una pipeline di inserimento flussi che inserisce flussi di file di testo archiviati in Cloud Storage, li trasforma utilizzando una funzione JavaScript definita dall'utente (UDF) fornita e aggiunge il risultato a BigQuery.

La pipeline viene eseguita a tempo indeterminato e deve essere terminata manualmente tramite un annullamento e non un svuotamento, a causa dell'utilizzo della trasformazione Watch, che è un DoFn suddividibile che non supporta lo svuotamento.

Requisiti della pipeline

  • Crea un file JSON che descriva lo schema della tabella di output in BigQuery.

    Assicurati che esista un array JSON di primo livello chiamato fields e che i relativi contenuti seguono lo schema {"name": "COLUMN_NAME", "type": "DATA_TYPE"}. Ad esempio:

    {
      "fields": [
        {
          "name": "name",
          "type": "STRING"
        },
        {
          "name": "age",
          "type": "INTEGER"
        }
      ]
    }
  • Crea un file JavaScript (.js) con la funzione UDF che fornisce la logica per trasformare le righe di testo. La funzione deve restituire una stringa JSON.

    L'esempio seguente divide ogni riga di un file CSV e crea un oggetto JSON con i valori e restituisce una stringa JSON:

    function process(inJson) {
      val = inJson.split(",");
    
      const obj = {
        "name": val[0],
        "age": parseInt(val[1])
      };
      return JSON.stringify(obj);
    }

Parametri del modello

Parametri obbligatori

  • inputFilePattern : il percorso gs:// del testo in Cloud Storage che vuoi elaborare. ad esempio gs://your-bucket/your-file.txt.
  • JSONPath : il percorso gs:// del file JSON che definisce lo schema BigQuery, archiviato in Cloud Storage. (ad esempio gs://your-bucket/your-schema.json).
  • outputTable: la posizione della tabella BigQuery da utilizzare per archiviare i dati elaborati. Se riutilizzi una tabella esistente, questa viene sovrascritta. (Esempio: <PROJECT_ID>:<DATASET_NAME>.<TABLE_NAME>).
  • javascriptTextTransformGcsPath: l'URI Cloud Storage del file .js che definisce la funzione JavaScript definita dall'utente (UDF) che vuoi utilizzare. (ad esempio gs://your-bucket/your-transforms/*.js).
  • javascriptTextTransformFunctionName : il nome della funzione definita dall'utente (UDF) JavaScript che vuoi utilizzare. Ad esempio, se il codice della funzione JavaScript è myTransform(inJson) { /*...do stuff...*/ }, il nome della funzione è myTransform. Per esempi di funzioni JavaScript definite dall'utente, consulta gli esempi di funzioni JavaScript definite dall'utente (https://github.com/GoogleCloudPlatform/DataflowTemplates#udf-examples) (ad esempio: transform_udf1).
  • bigQueryLoadingTemporaryDirectory : directory temporanea per il processo di caricamento di BigQuery. ad esempio gs://your-bucket/your-files/temp-dir.

Parametri facoltativi

  • outputDeadletterTable: tabella per i messaggi che non sono riusciti a raggiungere la tabella di output. Se una tabella non esiste, viene creata durante l'esecuzione della pipeline. Se non specificato, viene utilizzato <outputTableSpec>_error_records. (Esempio: <PROJECT_ID>:<DATASET_NAME>.<TABLE_NAME>).
  • useStorageWriteApiAtLeastOnce : questo parametro viene applicato soltanto se viene selezionato "Utilizza API BigQuery Storage Scrivi" sia abilitato. Se è attivata, per l'API Storage Write verrà utilizzata la semantica almeno una volta, altrimenti verrà utilizzata la semantica esattamente una volta. Il valore predefinito è false.
  • useStorageWriteApi : se true, la pipeline utilizza l'API BigQuery Storage Scrivi (https://cloud.google.com/bigquery/docs/write-api). Il valore predefinito è false. Per ulteriori informazioni, consulta Utilizzo dell'API StorageWrite (https://beam.apache.org/documentation/io/built-in/google-bigquery/#storage-write-api).
  • numStorageWriteApiStreams : quando si utilizza l'API StorageWrite, specifica il numero di flussi di scrittura. Se useStorageWriteApi è true e useStorageWriteApiAtLeastOnce è false, devi impostare questo parametro. Il valore predefinito è 0.
  • storageWriteApiTriggeringFrequencySec : quando utilizzi l'API StorageWrite, specifica la frequenza di attivazione in secondi. Se useStorageWriteApi è true e useStorageWriteApiAtLeastOnce è false, devi impostare questo parametro.
  • pythonExternalTextTransformGcsPath : il pattern del percorso di Cloud Storage per il codice Python contenente le funzioni definite dall'utente. ad esempio gs://your-bucket/your-function.py.
  • javascriptTextTransformReloadIntervalMinutes : specifica la frequenza di ricarica della funzione definita dall'utente, in minuti. Se il valore è maggiore di 0, Dataflow controlla periodicamente il file delle funzioni definite dall'utente in Cloud Storage e ricarica la funzione definita dall'utente se il file viene modificato. Questo parametro ti consente di aggiornare la UDF durante l'esecuzione della pipeline, senza dover riavviare il job. Se il valore è 0, il ricaricamento della funzione definita dall'utente viene disabilitato. Il valore predefinito è 0.

Funzione definita dall'utente

Questo modello richiede una funzione definita dall'utente che analizza i file di input, come descritto in Requisiti della pipeline. Il modello chiama la funzione definita dall'utente per ogni riga di testo in ogni file di input. Per ulteriori informazioni sulla creazione di funzioni definite dall'utente, consulta Crea funzioni definite dall'utente per i modelli Dataflow.

Specifiche della funzione

La funzione definita dall'utente ha la seguente specifica:

  • Input: una singola riga di testo da un file di input.
  • Output: una stringa JSON che corrisponde allo schema del Tabella di destinazione BigQuery.

Esegui il modello

Console

  1. Vai alla pagina Crea job da modello di Dataflow.
  2. Vai a Crea job da modello
  3. Nel campo Nome job, inserisci un nome univoco per il job.
  4. (Facoltativo) Per Endpoint a livello di regione, seleziona un valore dal menu a discesa. Il valore predefinito è us-central1.

    Per un elenco di regioni in cui è possibile eseguire un job Dataflow, consulta Località di Dataflow.

  5. Dal menu a discesa Modello Dataflow, seleziona the Cloud Storage Text to BigQuery (Stream) template.
  6. Inserisci i valori parametro negli appositi campi.
  7. Fai clic su Esegui job.

gcloud

Nella shell o nel terminale, esegui il modello:

gcloud dataflow flex-template run JOB_NAME \
    --template-file-gcs-location gs://dataflow-templates-REGION_NAME/VERSION/flex/Stream_GCS_Text_to_BigQuery_Flex \
    --region REGION_NAME \
    --staging-location STAGING_LOCATION \
    --parameters \
javascriptTextTransformGcsPath=PATH_TO_JAVASCRIPT_UDF_FILE,\
javascriptTextTransformFunctionName=JAVASCRIPT_FUNCTION,\
JSONPath=PATH_TO_BIGQUERY_SCHEMA_JSON,\
inputFilePattern=PATH_TO_TEXT_DATA,\
outputTable=BIGQUERY_TABLE,\
outputDeadletterTable=BIGQUERY_UNPROCESSED_TABLE,\
bigQueryLoadingTemporaryDirectory=PATH_TO_TEMP_DIR_ON_GCS

Sostituisci quanto segue:

  • JOB_NAME: un nome job univoco di tua scelta
  • REGION_NAME: la regione in cui vuoi eseguire il deployment del job Dataflow, ad esempio us-central1
  • VERSION: la versione del modello che vuoi utilizzare

    Puoi utilizzare i seguenti valori:

  • STAGING_LOCATION: la posizione per i file locali di gestione temporanea (ad esempio, gs://your-bucket/staging)
  • JAVASCRIPT_FUNCTION: il nome della funzione definita dall'utente (UDF) JavaScript che vuoi utilizzare

    Ad esempio, se il codice della funzione JavaScript è myTransform(inJson) { /*...do stuff...*/ }, il nome della funzione è myTransform. Per esempi di funzioni JavaScript definite dall'utente, consulta Esempi di funzioni definite dall'utente.

  • PATH_TO_BIGQUERY_SCHEMA_JSON: il percorso Cloud Storage di Il file JSON contenente la definizione dello schema
  • PATH_TO_JAVASCRIPT_UDF_FILE: L'URI Cloud Storage del file .js che definisce il codice JavaScript definito dall'utente che vuoi utilizzare, ad esempio gs://my-bucket/my-udfs/my_file.js
  • PATH_TO_TEXT_DATA: il percorso Cloud Storage del tuo set di dati di testo
  • BIGQUERY_TABLE: il nome della tua tabella BigQuery
  • BIGQUERY_UNPROCESSED_TABLE: il nome del tuo Tabella BigQuery per i messaggi non elaborati
  • PATH_TO_TEMP_DIR_ON_GCS: il percorso Cloud Storage della directory temporanea

API

Per eseguire il modello utilizzando l'API REST, invia una richiesta POST HTTP. Per ulteriori informazioni sul API e i relativi ambiti di autorizzazione, consulta projects.templates.launch

POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/flexTemplates:launch
{
   "launch_parameter": {
      "jobName": "JOB_NAME",
      "parameters": {
       "javascriptTextTransformFunctionName": "JAVASCRIPT_FUNCTION",
       "JSONPath": "PATH_TO_BIGQUERY_SCHEMA_JSON",
       "javascriptTextTransformGcsPath": "PATH_TO_JAVASCRIPT_UDF_FILE",
       "inputFilePattern":"PATH_TO_TEXT_DATA",
       "outputTable":"BIGQUERY_TABLE",
       "outputDeadletterTable":"BIGQUERY_UNPROCESSED_TABLE",
       "bigQueryLoadingTemporaryDirectory": "PATH_TO_TEMP_DIR_ON_GCS"
      },
      "containerSpecGcsPath": "gs://dataflow-templates-LOCATION/VERSION/flex/Stream_GCS_Text_to_BigQuery_Flex",
   }
}

Sostituisci quanto segue:

  • PROJECT_ID: L'ID progetto Google Cloud in cui vuoi eseguire il job Dataflow
  • JOB_NAME: un nome job univoco di tua scelta
  • LOCATION: la regione in cui vuoi eseguire il deployment del job Dataflow, ad esempio us-central1
  • VERSION: la versione del modello che vuoi utilizzare

    Puoi utilizzare i seguenti valori:

  • STAGING_LOCATION: la posizione per i file locali di gestione temporanea (ad esempio, gs://your-bucket/staging)
  • JAVASCRIPT_FUNCTION: il nome della funzione definita dall'utente (UDF) JavaScript che vuoi utilizzare

    Ad esempio, se il codice della funzione JavaScript è myTransform(inJson) { /*...do stuff...*/ }, il nome della funzione è myTransform. Per esempi di funzioni JavaScript definite dall'utente, consulta Esempi di funzioni definite dall'utente.

  • PATH_TO_BIGQUERY_SCHEMA_JSON: il percorso Cloud Storage di Il file JSON contenente la definizione dello schema
  • PATH_TO_JAVASCRIPT_UDF_FILE: L'URI Cloud Storage del file .js che definisce il codice JavaScript definito dall'utente che vuoi utilizzare, ad esempio gs://my-bucket/my-udfs/my_file.js
  • PATH_TO_TEXT_DATA: il percorso Cloud Storage del tuo set di dati di testo
  • BIGQUERY_TABLE: il nome della tua tabella BigQuery
  • BIGQUERY_UNPROCESSED_TABLE: il nome del tuo Tabella BigQuery per i messaggi non elaborati
  • PATH_TO_TEMP_DIR_ON_GCS: il percorso di Cloud Storage alla directory temporanea

Passaggi successivi