Plantilla de Pub/Sub a Datadog

La plantilla de Pub/Sub a Datadog es una canalización de transmisión que lee mensajes de una suscripción a Pub/Sub y escribe la carga útil del mensaje en Datadog mediante el uso de un extremo de Datadog. El caso de uso más común de esta plantilla es exportar archivos de registro a Datadog.

Antes de escribir en Datadog, puedes aplicar una función definida por el usuario de JavaScript a la carga útil del mensaje. Los mensajes con fallas de procesamiento se reenvían a un tema de mensajes no enviados de Pub/Sub para solucionar los problemas y volver a procesarlos.

Como una capa adicional de protección para tus claves y secretos de API, también puedes pasar una clave de Cloud KMS junto con el parámetro de clave de API codificado en base64 encriptado con la clave de Cloud KMS. Para obtener más detalles sobre cómo encriptar el parámetro de clave de API, consulta el extremo de encriptación de la API de Cloud KMS.

Requisitos de la canalización

  • La suscripción de Pub/Sub de origen debe existir antes de ejecutar la canalización.
  • El tema sin procesar de Pub/Sub debe existir antes de ejecutar la canalización.
  • Se debe poder acceder a la URL de Datadog desde la red de los trabajadores de Dataflow.
  • La clave de API de Datadog debe generarse y estar disponible.

Parámetros de la plantilla

Parámetros obligatorios

  • inputSubscription: Es la suscripción a Pub/Sub desde la que se lee la entrada. Por ejemplo, projects/your-project-id/subscriptions/your-subscription-name
  • url: La URL de la API de registros de Datadog. Esta URL se debe poder enrutar desde la VPC en la que se ejecuta la canalización. Consulta los registros de envío (https://docs.datadoghq.com/api/latest/logs/#send-logs) en la documentación de Datadog para obtener más información. Por ejemplo, https://http-intake.logs.datadoghq.com.
  • outputDeadletterTopic: El tema de Pub/Sub al que se reenviarán los mensajes que no se pueden entregar. Por ejemplo, projects/<PROJECT_ID>/topics/<TOPIC_NAME>

Parámetros opcionales

  • apiKey: La clave de API de Datadog. Debes proporcionar este valor si apiKeySource se configura como PLAINTEXT o KMS. Para obtener más información, consulta la API y las claves de aplicación (https://docs.datadoghq.com/account_management/api-app-keys/) en la documentación de Datadog.
  • batchCount: El tamaño del lote para enviar varios eventos a Datadog. El valor predeterminado es 1 (sin lotes).
  • parallelism: Es la cantidad máxima de solicitudes paralelas. El valor predeterminado es 1 (sin paralelismo).
  • includePubsubMessage: Indica si se debe incluir el mensaje de Pub/Sub completo en la carga útil. El valor predeterminado es true (todos los elementos, incluido el de datos, se incluyen en la carga útil).
  • apiKeyKMSEncryptionKey: La clave de Cloud KMS que se usará para desencriptar la clave de API. Debes proporcionar este parámetro si apiKeySource se configura como KMS. Si se proporciona la clave de Cloud KMS, debes pasar una clave de API encriptada. Por ejemplo, projects/your-project-id/locations/global/keyRings/your-keyring/cryptoKeys/your-key-name.
  • apiKeySecretId: El ID del Secret de Secret Manager para la clave de API. Debes proporcionar este parámetro si apiKeySource se configura como SECRET_MANAGER. Por ejemplo, projects/your-project-id/secrets/your-secret/versions/your-secret-version.
  • apiKeySource: Es la fuente de la clave de API. Se admiten los siguientes valores: PLAINTEXT, KMS y SECRET_MANAGER. Debes proporcionar este parámetro si usas Secret Manager. Si apiKeySource se configura como KMS, también debes proporcionar apiKeyKMSEncryptionKey y API Key encriptado. Si apiKeySource se configura como SECRET_MANAGER, también debes proporcionar apiKeySecretId. Si apiKeySource se configura como PLAINTEXT, también debes proporcionar apiKey.
  • javascriptTextTransformGcsPath: El URI de Cloud Storage del archivo .js que define la función definida por el usuario (UDF) de JavaScript que se usará. Por ejemplo, gs://my-bucket/my-udfs/my_file.js
  • javascriptTextTransformFunctionName: Es el nombre de la función definida por el usuario (UDF) de JavaScript que se usará. Por ejemplo, si el código de tu función de JavaScript es myTransform(inJson) { /*...do stuff...*/ }, el nombre de la función es myTransform. Para ver ejemplos de UDF de JavaScript, consulta Ejemplos de UDF (https://github.com/GoogleCloudPlatform/DataflowTemplates#udf-examples).
  • javascriptTextTransformReloadIntervalMinutes: Define el intervalo que los trabajadores pueden verificar para detectar cambios en la UDF de JavaScript a fin de volver a cargar los archivos. La configuración predeterminada es 0.

Función definida por el usuario

Para extender esta plantilla, puedes escribir una función definida por el usuario (UDF). La plantilla llama a la UDF para cada elemento de entrada. Las cargas útiles de elementos se serializan como cadenas JSON. Para obtener más información, consulta Crea funciones definidas por el usuario para plantillas de Dataflow.

Especificación de la función

La UDF tiene la siguiente especificación:

  • Entrada: el campo de datos del mensaje de Pub/Sub, serializado como una cadena JSON.
  • Resultado: Los datos del evento que se enviarán al extremo del sitio de Datadog. El resultado debe ser una cadena o un objeto JSON en cadena.

Ejecuta la plantilla

  1. Ve a la página Crear un trabajo a partir de una plantilla de Dataflow.
  2. Ir a Crear un trabajo a partir de una plantilla
  3. En el campo Nombre del trabajo, ingresa un nombre de trabajo único.
  4. Opcional: Para Extremo regional, selecciona un valor del menú desplegable. La región predeterminada es us-central1.

    Para obtener una lista de regiones en las que puedes ejecutar un trabajo de Dataflow, consulta Ubicaciones de Dataflow.

  5. En el menú desplegable Plantilla de Dataflow, selecciona the Pub/Sub to Datadog template.
  6. En los campos de parámetros proporcionados, ingresa los valores de tus parámetros.
  7. Haga clic en Ejecutar trabajo.

En tu shell o terminal, ejecuta la plantilla:

gcloud dataflow jobs run JOB_NAME \
    --gcs-location gs://dataflow-templates-REGION_NAME/VERSION/Cloud_PubSub_to_Datadog \
    --region REGION_NAME \
    --staging-location STAGING_LOCATION \
    --parameters \
inputSubscription=projects/PROJECT_ID/subscriptions/INPUT_SUBSCRIPTION_NAME,\
apiKey=API_KEY,\
url=URL,\
outputDeadletterTopic=projects/PROJECT_ID/topics/DEADLETTER_TOPIC_NAME,\
javascriptTextTransformGcsPath=PATH_TO_JAVASCRIPT_UDF_FILE,\
javascriptTextTransformFunctionName=JAVASCRIPT_FUNCTION,\
batchCount=BATCH_COUNT,\
parallelism=PARALLELISM

Reemplaza lo siguiente:

  • JOB_NAME: Es el nombre del trabajo que elijas
  • REGION_NAME: La región en la que deseas implementar tu trabajo de Dataflow, por ejemplo, us-central1
  • VERSION: Es la versión de la plantilla que deseas usar.

    Puedes usar los siguientes valores:

    • latest para usar la última versión de la plantilla, que está disponible en la carpeta superior non-dated en el bucket gs://dataflow-templates-REGION_NAME/latest/
    • el nombre de la versión, como 2023-09-12-00_RC00, para usar una versión específica de la plantilla, que se puede encontrar anidada en la carpeta superior con fecha correspondiente en el bucket gs://dataflow-templates-REGION_NAME/
  • STAGING_LOCATION: la ubicación para los archivos locales de etapa de pruebas (por ejemplo, gs://your-bucket/staging).
  • INPUT_SUBSCRIPTION_NAME: Es el nombre de la suscripción a Pub/Sub.
  • API_KEY: La clave de API de Datadog
  • URL: Es la URL del extremo de Datadog (por ejemplo, https://http-intake.logs.datadoghq.com).
  • DEADLETTER_TOPIC_NAME: Es el nombre del tema de Pub/Sub.
  • JAVASCRIPT_FUNCTION es el nombre de la función definida por el usuario (UDF) de JavaScript que deseas usar.

    Por ejemplo, si el código de tu función de JavaScript es myTransform(inJson) { /*...do stuff...*/ }, el nombre de la función es myTransform. Para ver ejemplos de UDF de JavaScript, consulta Ejemplos de UDF.

  • PATH_TO_JAVASCRIPT_UDF_FILE: El URI de Cloud Storage del archivo .js que define la función definida por el usuario (UDF) de JavaScript que deseas usar, por ejemplo:gs://my-bucket/my-udfs/my_file.js
  • BATCH_COUNT: Es el tamaño del lote que se debe usar para enviar varios eventos a Datadog.
  • PARALLELISM: Es la cantidad de solicitudes paralelas que se usarán para enviar eventos a Datadog.

Para ejecutar la plantilla con la API de REST, envía una solicitud POST HTTP. Para obtener más información de la API y sus permisos de autorización, consulta projects.templates.launch.

POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/templates:launch?gcsPath=gs://dataflow-templates-LOCATION/VERSION/Cloud_PubSub_to_Datadog
{
   "jobName": "JOB_NAME",
   "environment": {
       "ipConfiguration": "WORKER_IP_UNSPECIFIED",
       "additionalExperiments": []
   },
   "parameters": {
       "inputSubscription": "projects/PROJECT_ID/subscriptions/INPUT_SUBSCRIPTION_NAME",
       "apiKey": "API_KEY",
       "url": "URL",
       "outputDeadletterTopic": "projects/PROJECT_ID/topics/DEADLETTER_TOPIC_NAME",
       "javascriptTextTransformGcsPath": "PATH_TO_JAVASCRIPT_UDF_FILE",
       "javascriptTextTransformFunctionName": "JAVASCRIPT_FUNCTION",
       "batchCount": "BATCH_COUNT",
       "parallelism": "PARALLELISM"
   }
}

Reemplaza lo siguiente:

  • PROJECT_ID: El ID del proyecto de Google Cloud en el que deseas ejecutar el trabajo de Dataflow.
  • JOB_NAME: Es el nombre del trabajo que elijas
  • LOCATION: La región en la que deseas implementar tu trabajo de Dataflow, por ejemplo, us-central1
  • VERSION: Es la versión de la plantilla que deseas usar.

    Puedes usar los siguientes valores:

    • latest para usar la última versión de la plantilla, que está disponible en la carpeta superior non-dated en el bucket gs://dataflow-templates-REGION_NAME/latest/
    • el nombre de la versión, como 2023-09-12-00_RC00, para usar una versión específica de la plantilla, que se puede encontrar anidada en la carpeta superior con fecha correspondiente en el bucket gs://dataflow-templates-REGION_NAME/
  • STAGING_LOCATION: la ubicación para los archivos locales de etapa de pruebas (por ejemplo, gs://your-bucket/staging).
  • INPUT_SUBSCRIPTION_NAME: Es el nombre de la suscripción a Pub/Sub.
  • API_KEY: La clave de API de Datadog
  • URL: Es la URL del extremo de Datadog (por ejemplo, https://http-intake.logs.datadoghq.com).
  • DEADLETTER_TOPIC_NAME: Es el nombre del tema de Pub/Sub.
  • JAVASCRIPT_FUNCTION es el nombre de la función definida por el usuario (UDF) de JavaScript que deseas usar.

    Por ejemplo, si el código de tu función de JavaScript es myTransform(inJson) { /*...do stuff...*/ }, el nombre de la función es myTransform. Para ver ejemplos de UDF de JavaScript, consulta Ejemplos de UDF.

  • PATH_TO_JAVASCRIPT_UDF_FILE: El URI de Cloud Storage del archivo .js que define la función definida por el usuario (UDF) de JavaScript que deseas usar, por ejemplo:gs://my-bucket/my-udfs/my_file.js
  • BATCH_COUNT: Es el tamaño del lote que se debe usar para enviar varios eventos a Datadog.
  • PARALLELISM: Es la cantidad de solicitudes paralelas que se usarán para enviar eventos a Datadog.
Java
/*
 * Copyright (C) 2019 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */
package com.google.cloud.teleport.templates;

import com.google.cloud.teleport.coders.FailsafeElementCoder;
import com.google.cloud.teleport.datadog.DatadogEvent;
import com.google.cloud.teleport.datadog.DatadogEventCoder;
import com.google.cloud.teleport.datadog.DatadogIO;
import com.google.cloud.teleport.datadog.DatadogWriteError;
import com.google.cloud.teleport.metadata.Template;
import com.google.cloud.teleport.metadata.TemplateCategory;
import com.google.cloud.teleport.templates.PubSubToDatadog.PubSubToDatadogOptions;
import com.google.cloud.teleport.templates.common.DatadogConverters;
import com.google.cloud.teleport.templates.common.DatadogConverters.DatadogOptions;
import com.google.cloud.teleport.templates.common.ErrorConverters;
import com.google.cloud.teleport.templates.common.JavascriptTextTransformer.FailsafeJavascriptUdf;
import com.google.cloud.teleport.templates.common.JavascriptTextTransformer.JavascriptTextTransformerOptions;
import com.google.cloud.teleport.templates.common.PubsubConverters.PubsubReadSubscriptionOptions;
import com.google.cloud.teleport.templates.common.PubsubConverters.PubsubWriteDeadletterTopicOptions;
import com.google.cloud.teleport.util.DatadogApiKeyNestedValueProvider;
import com.google.cloud.teleport.values.FailsafeElement;
import com.google.common.annotations.VisibleForTesting;
import com.google.gson.Gson;
import com.google.gson.JsonObject;
import com.google.gson.JsonSyntaxException;
import java.nio.charset.StandardCharsets;
import java.util.Map;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.PipelineResult;
import org.apache.beam.sdk.coders.CoderRegistry;
import org.apache.beam.sdk.coders.StringUtf8Coder;
import org.apache.beam.sdk.io.gcp.pubsub.PubsubIO;
import org.apache.beam.sdk.io.gcp.pubsub.PubsubMessage;
import org.apache.beam.sdk.metrics.Counter;
import org.apache.beam.sdk.metrics.Metrics;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.ValueProvider;
import org.apache.beam.sdk.transforms.DoFn;
import org.apache.beam.sdk.transforms.Flatten;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.transforms.PTransform;
import org.apache.beam.sdk.transforms.ParDo;
import org.apache.beam.sdk.values.PBegin;
import org.apache.beam.sdk.values.PCollection;
import org.apache.beam.sdk.values.PCollectionList;
import org.apache.beam.sdk.values.PCollectionTuple;
import org.apache.beam.sdk.values.TupleTag;
import org.apache.beam.vendor.guava.v32_1_2_jre.com.google.common.base.MoreObjects;
import org.apache.beam.vendor.guava.v32_1_2_jre.com.google.common.collect.ImmutableList;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * The {@link PubSubToDatadog} pipeline is a streaming pipeline which ingests data from Cloud
 * Pub/Sub, executes a UDF, converts the output to {@link DatadogEvent}s and writes those records
 * into Datadog's Logs API. Any errors which occur in the execution of the UDF, conversion to {@link
 * DatadogEvent} or writing to Logs API will be streamed into a Pub/Sub topic.
 *
 * <p><b>Pipeline Requirements</b>
 *
 * <ul>
 *   <li>The source Pub/Sub subscription exists.
 *   <li>Logs API is routable from the VPC where the Dataflow job executes.
 *   <li>Deadletter topic exists.
 * </ul>
 *
 * <p>Check out <a
 * href="https://github.com/GoogleCloudPlatform/DataflowTemplates/blob/main/v1/README_Cloud_PubSub_to_Datadog.md">README</a>
 * for instructions on how to use or modify this template.
 */
@Template(
    name = "Cloud_PubSub_to_Datadog",
    category = TemplateCategory.STREAMING,
    displayName = "Pub/Sub to Datadog",
    description = {
      "The Pub/Sub to Datadog template is a streaming pipeline that reads messages from a Pub/Sub subscription and writes the message payload to Datadog by using a Datadog endpoint. The most common use case for this template is to export log files to Datadog. "
          + "For more information check out <a href=\"https://docs.datadoghq.com/integrations/google_cloud_platform/?tab=project#log-collection\">Datadog's log collection process</a>.\n",
      "Before writing to Datadog, you can apply a JavaScript user-defined function to the message payload. "
          + "Any messages that experience processing failures are forwarded to a Pub/Sub unprocessed topic for further troubleshooting and reprocessing.\n",
      "As an extra layer of protection for your API keys and secrets, you can also pass in a Cloud KMS key along with the base64-encoded API key parameter encrypted with the Cloud KMS key. For additional details about encrypting your API key parameter, see the <a href=\"https://cloud.google.com/kms/docs/reference/rest/v1/projects.locations.keyRings.cryptoKeys/encrypt\">Cloud KMS API encryption endpoint</a>."
    },
    optionsClass = PubSubToDatadogOptions.class,
    optionsOrder = {
      PubsubReadSubscriptionOptions.class,
      DatadogOptions.class,
      JavascriptTextTransformerOptions.class,
      PubsubWriteDeadletterTopicOptions.class
    },
    documentation =
        "https://cloud.google.com/dataflow/docs/guides/templates/provided/pubsub-to-datadog",
    contactInformation = "https://cloud.google.com/support",
    preview = true,
    requirements = {
      "The source Pub/Sub subscription must exist prior to running the pipeline.",
      "The Pub/Sub unprocessed topic must exist prior to running the pipeline.",
      "The Datadog URL must be accessible from the network of the Dataflow workers.",
      "The Datadog API key must be generated and available."
    },
    streaming = true,
    supportsAtLeastOnce = true)
public class PubSubToDatadog {

  /** String/String Coder for FailsafeElement. */
  public static final FailsafeElementCoder<String, String> FAILSAFE_ELEMENT_CODER =
      FailsafeElementCoder.of(StringUtf8Coder.of(), StringUtf8Coder.of());

  /** Counter to track inbound messages from source. */
  private static final Counter INPUT_MESSAGES_COUNTER =
      Metrics.counter(PubSubToDatadog.class, "inbound-pubsub-messages");

  /** The tag for successful {@link DatadogEvent} conversion. */
  private static final TupleTag<DatadogEvent> DATADOG_EVENT_OUT = new TupleTag<DatadogEvent>() {};

  /** The tag for failed {@link DatadogEvent} conversion. */
  private static final TupleTag<FailsafeElement<String, String>> DATADOG_EVENT_DEADLETTER_OUT =
      new TupleTag<FailsafeElement<String, String>>() {};

  /** The tag for the main output for the UDF. */
  private static final TupleTag<FailsafeElement<String, String>> UDF_OUT =
      new TupleTag<FailsafeElement<String, String>>() {};

  /** The tag for the dead-letter output of the udf. */
  private static final TupleTag<FailsafeElement<String, String>> UDF_DEADLETTER_OUT =
      new TupleTag<FailsafeElement<String, String>>() {};

  /** GSON to process a {@link PubsubMessage}. */
  private static final Gson GSON = new Gson();

  /** Logger for class. */
  private static final Logger LOG = LoggerFactory.getLogger(PubSubToDatadog.class);

  private static final Boolean DEFAULT_INCLUDE_PUBSUB_MESSAGE = true;

  @VisibleForTesting protected static final String PUBSUB_MESSAGE_ATTRIBUTE_FIELD = "attributes";
  @VisibleForTesting protected static final String PUBSUB_MESSAGE_DATA_FIELD = "data";
  private static final String PUBSUB_MESSAGE_ID_FIELD = "messageId";

  /**
   * The main entry-point for pipeline execution. This method will start the pipeline but will not
   * wait for it's execution to finish. If blocking execution is required, use the {@link
   * PubSubToDatadog#run(PubSubToDatadogOptions)} method to start the pipeline and invoke {@code
   * result.waitUntilFinish()} on the {@link PipelineResult}.
   *
   * @param args The command-line args passed by the executor.
   */
  public static void main(String[] args) {

    PubSubToDatadogOptions options =
        PipelineOptionsFactory.fromArgs(args).withValidation().as(PubSubToDatadogOptions.class);

    run(options);
  }

  /**
   * Runs the pipeline to completion with the specified options. This method does not wait until the
   * pipeline is finished before returning. Invoke {@code result.waitUntilFinish()} on the result
   * object to block until the pipeline is finished running if blocking programmatic execution is
   * required.
   *
   * @param options The execution options.
   * @return The pipeline result.
   */
  public static PipelineResult run(PubSubToDatadogOptions options) {

    Pipeline pipeline = Pipeline.create(options);

    // Register coders.
    CoderRegistry registry = pipeline.getCoderRegistry();
    registry.registerCoderForClass(DatadogEvent.class, DatadogEventCoder.of());
    registry.registerCoderForType(
        FAILSAFE_ELEMENT_CODER.getEncodedTypeDescriptor(), FAILSAFE_ELEMENT_CODER);

    /*
     * Steps:
     *  1) Read messages in from Pub/Sub
     *  2) Convert message to FailsafeElement for processing.
     *  3) Apply user provided UDF (if any) on the input strings.
     *  4) Convert successfully transformed messages into DatadogEvent objects
     *  5) Write DatadogEvents to Datadog's Logs API.
     *  5a) Wrap write failures into a FailsafeElement.
     *  6) Collect errors from UDF transform (#3), DatadogEvent transform (#4)
     *     and writing to Datadog Logs API (#5) and stream into a Pub/Sub deadletter topic.
     */

    // 1) Read messages in from Pub/Sub
    PCollection<String> stringMessages =
        pipeline.apply(
            "ReadMessages",
            new ReadMessages(options.getInputSubscription(), options.getIncludePubsubMessage()));

    // 2) Convert message to FailsafeElement for processing.
    PCollectionTuple transformedOutput =
        stringMessages
            .apply(
                "ConvertToFailsafeElement",
                MapElements.into(FAILSAFE_ELEMENT_CODER.getEncodedTypeDescriptor())
                    .via(input -> FailsafeElement.of(input, input)))

            // 3) Apply user provided UDF (if any) on the input strings.
            .apply(
                "ApplyUDFTransformation",
                FailsafeJavascriptUdf.<String>newBuilder()
                    .setFileSystemPath(options.getJavascriptTextTransformGcsPath())
                    .setFunctionName(options.getJavascriptTextTransformFunctionName())
                    .setReloadIntervalMinutes(
                        options.getJavascriptTextTransformReloadIntervalMinutes())
                    .setLoggingEnabled(ValueProvider.StaticValueProvider.of(true))
                    .setSuccessTag(UDF_OUT)
                    .setFailureTag(UDF_DEADLETTER_OUT)
                    .build());

    // 4) Convert successfully transformed messages into DatadogEvent objects
    PCollectionTuple convertToEventTuple =
        transformedOutput
            .get(UDF_OUT)
            .apply(
                "ConvertToDatadogEvent",
                DatadogConverters.failsafeStringToDatadogEvent(
                    DATADOG_EVENT_OUT, DATADOG_EVENT_DEADLETTER_OUT));

    // 5) Write DatadogEvents to Datadog's Logs API.
    PCollection<DatadogWriteError> writeErrors =
        convertToEventTuple
            .get(DATADOG_EVENT_OUT)
            .apply(
                "WriteToDatadog",
                DatadogIO.writeBuilder()
                    .withApiKey(
                        new DatadogApiKeyNestedValueProvider(
                            options.getApiKeySecretId(),
                            options.getApiKeyKMSEncryptionKey(),
                            options.getApiKey(),
                            options.getApiKeySource()))
                    .withUrl(options.getUrl())
                    .withBatchCount(options.getBatchCount())
                    .withParallelism(options.getParallelism())
                    .build());

    // 5a) Wrap write failures into a FailsafeElement.
    PCollection<FailsafeElement<String, String>> wrappedDatadogWriteErrors =
        writeErrors.apply(
            "WrapDatadogWriteErrors",
            ParDo.of(
                new DoFn<DatadogWriteError, FailsafeElement<String, String>>() {

                  @ProcessElement
                  public void processElement(ProcessContext context) {
                    DatadogWriteError error = context.element();
                    FailsafeElement<String, String> failsafeElement =
                        FailsafeElement.of(error.payload(), error.payload());

                    if (error.statusMessage() != null) {
                      failsafeElement.setErrorMessage(error.statusMessage());
                    }

                    if (error.statusCode() != null) {
                      failsafeElement.setErrorMessage(
                          String.format("Datadog write status code: %d", error.statusCode()));
                    }
                    context.output(failsafeElement);
                  }
                }));

    // 6) Collect errors from UDF transform (#4), DatadogEvent transform (#5)
    //     and writing to Datadog Logs API (#6) and stream into a Pub/Sub deadletter topic.
    PCollectionList.of(
            ImmutableList.of(
                convertToEventTuple.get(DATADOG_EVENT_DEADLETTER_OUT),
                wrappedDatadogWriteErrors,
                transformedOutput.get(UDF_DEADLETTER_OUT)))
        .apply("FlattenErrors", Flatten.pCollections())
        .apply(
            "WriteFailedRecords",
            ErrorConverters.WriteStringMessageErrorsToPubSub.newBuilder()
                .setErrorRecordsTopic(options.getOutputDeadletterTopic())
                .build());

    return pipeline.run();
  }

  /**
   * The {@link PubSubToDatadogOptions} class provides the custom options passed by the executor at
   * the command line.
   */
  public interface PubSubToDatadogOptions
      extends DatadogOptions,
          PubsubReadSubscriptionOptions,
          PubsubWriteDeadletterTopicOptions,
          JavascriptTextTransformerOptions {}

  /**
   * A {@link PTransform} that reads messages from a Pub/Sub subscription, increments a counter and
   * returns a {@link PCollection} of {@link String} messages.
   */
  private static class ReadMessages extends PTransform<PBegin, PCollection<String>> {
    private final ValueProvider<String> subscriptionName;
    private final ValueProvider<Boolean> inputIncludePubsubMessageFlag;
    private Boolean includePubsubMessage;

    ReadMessages(
        ValueProvider<String> subscriptionName,
        ValueProvider<Boolean> inputIncludePubsubMessageFlag) {
      this.subscriptionName = subscriptionName;
      this.inputIncludePubsubMessageFlag = inputIncludePubsubMessageFlag;
    }

    @Override
    public PCollection<String> expand(PBegin input) {
      return input
          .apply(
              "ReadPubsubMessage",
              PubsubIO.readMessagesWithAttributes().fromSubscription(subscriptionName))
          .apply(
              "ExtractMessageIfRequired",
              ParDo.of(
                  new DoFn<PubsubMessage, String>() {

                    @Setup
                    public void setup() {
                      if (inputIncludePubsubMessageFlag != null) {
                        includePubsubMessage = inputIncludePubsubMessageFlag.get();
                      }
                      includePubsubMessage =
                          MoreObjects.firstNonNull(
                              includePubsubMessage, DEFAULT_INCLUDE_PUBSUB_MESSAGE);
                      LOG.info("includePubsubMessage set to: {}", includePubsubMessage);
                    }

                    @ProcessElement
                    public void processElement(ProcessContext context) {
                      if (includePubsubMessage) {
                        context.output(formatPubsubMessage(context.element()));
                      } else {
                        context.output(
                            new String(context.element().getPayload(), StandardCharsets.UTF_8));
                      }
                    }
                  }))
          .apply(
              "CountMessages",
              ParDo.of(
                  new DoFn<String, String>() {
                    @ProcessElement
                    public void processElement(ProcessContext context) {
                      INPUT_MESSAGES_COUNTER.inc();
                      context.output(context.element());
                    }
                  }));
    }
  }

  /**
   * Utility method that formats {@link org.apache.beam.sdk.io.gcp.pubsub.PubsubMessage} according
   * to the model defined in {@link com.google.pubsub.v1.PubsubMessage}.
   *
   * @param pubsubMessage {@link org.apache.beam.sdk.io.gcp.pubsub.PubsubMessage}
   * @return JSON String that adheres to the model defined in {@link
   *     com.google.pubsub.v1.PubsubMessage}
   */
  @VisibleForTesting
  protected static String formatPubsubMessage(PubsubMessage pubsubMessage) {
    JsonObject messageJson = new JsonObject();

    String payload = new String(pubsubMessage.getPayload(), StandardCharsets.UTF_8);
    try {
      JsonObject data = GSON.fromJson(payload, JsonObject.class);
      messageJson.add(PUBSUB_MESSAGE_DATA_FIELD, data);
    } catch (JsonSyntaxException e) {
      messageJson.addProperty(PUBSUB_MESSAGE_DATA_FIELD, payload);
    }

    JsonObject attributes = getAttributesJson(pubsubMessage.getAttributeMap());
    messageJson.add(PUBSUB_MESSAGE_ATTRIBUTE_FIELD, attributes);

    if (pubsubMessage.getMessageId() != null) {
      messageJson.addProperty(PUBSUB_MESSAGE_ID_FIELD, pubsubMessage.getMessageId());
    }

    return messageJson.toString();
  }

  /**
   * Constructs a {@link JsonObject} from a {@link Map} of Pub/Sub attributes.
   *
   * @param attributesMap {@link Map} of Pub/Sub attributes
   * @return {@link JsonObject} of Pub/Sub attributes
   */
  private static JsonObject getAttributesJson(Map<String, String> attributesMap) {
    JsonObject attributesJson = new JsonObject();
    for (String key : attributesMap.keySet()) {
      attributesJson.addProperty(key, attributesMap.get(key));
    }

    return attributesJson;
  }
}

¿Qué sigue?