Pub/Sub to BigQuery template

The Pub/Sub to BigQuery template is a streaming pipeline that reads JSON-formatted messages from Pub/Sub and writes them to a BigQuery table. Optionally, you can provide a user-defined function (UDF) written in JavaScript to process the incoming messages.

Pipeline requirements

  • The BigQuery table must exist and have a schema.
  • The Pub/Sub message data must use JSON format, or you must provide a UDF that converts the message data to JSON. The JSON data must match the BigQuery table schema. For example, if the JSON payloads are formatted as {"k1":"v1", "k2":"v2"}, the BigQuery table must have two string columns named k1 and k2.
  • Specify the inputSubscription or inputTopic parameter, but not both.

Template parameters

Required parameters

  • outputTableSpec: The BigQuery table to write to, formatted as PROJECT_ID:DATASET_NAME.TABLE_NAME.

Optional parameters

  • inputTopic: The Pub/Sub topic to read from, formatted as projects/<PROJECT_ID>/topics/<TOPIC_NAME>.
  • inputSubscription: The Pub/Sub subscription to read from, formatted as projects/<PROJECT_ID>/subscriptions/<SUBCRIPTION_NAME>.
  • outputDeadletterTable: The BigQuery table to use for messages that failed to reach the output table, formatted as PROJECT_ID:DATASET_NAME.TABLE_NAME. If the table doesn't exist, it is created when the pipeline runs. If this parameter is not specified, the value OUTPUT_TABLE_SPEC_error_records is used instead.
  • useStorageWriteApiAtLeastOnce: When using the Storage Write API, specifies the write semantics. To use at-least-once semantics (https://beam.apache.org/documentation/io/built-in/google-bigquery/#at-least-once-semantics), set this parameter to true. To use exactly-once semantics, set the parameter to false. This parameter applies only when useStorageWriteApi is true. The default value is false.
  • useStorageWriteApi: If true, the pipeline uses the BigQuery Storage Write API (https://cloud.google.com/bigquery/docs/write-api). The default value is false. For more information, see Using the Storage Write API (https://beam.apache.org/documentation/io/built-in/google-bigquery/#storage-write-api).
  • numStorageWriteApiStreams: When using the Storage Write API, specifies the number of write streams. If useStorageWriteApi is true and useStorageWriteApiAtLeastOnce is false, then you must set this parameter. Defaults to: 0.
  • storageWriteApiTriggeringFrequencySec: When using the Storage Write API, specifies the triggering frequency, in seconds. If useStorageWriteApi is true and useStorageWriteApiAtLeastOnce is false, then you must set this parameter.
  • javascriptTextTransformGcsPath: The Cloud Storage URI of the .js file that defines the JavaScript user-defined function (UDF) to use. For example, gs://my-bucket/my-udfs/my_file.js.
  • javascriptTextTransformFunctionName: The name of the JavaScript user-defined function (UDF) to use. For example, if your JavaScript function code is myTransform(inJson) { /*...do stuff...*/ }, then the function name is myTransform. For sample JavaScript UDFs, see UDF Examples (https://github.com/GoogleCloudPlatform/DataflowTemplates#udf-examples).
  • javascriptTextTransformReloadIntervalMinutes: Specifies how frequently to reload the UDF, in minutes. If the value is greater than 0, Dataflow periodically checks the UDF file in Cloud Storage, and reloads the UDF if the file is modified. This parameter allows you to update the UDF while the pipeline is running, without needing to restart the job. If the value is 0, UDF reloading is disabled. The default value is 0.

User-defined function

Optionally, you can extend this template by writing a user-defined function (UDF). The template calls the UDF for each input element. Element payloads are serialized as JSON strings. For more information, see Create user-defined functions for Dataflow templates.

Function specification

The UDF has the following specification:

  • Input: the Pub/Sub message data field, serialized as a JSON string.
  • Output: a JSON string that matches the schema of the BigQuery destination table.
  • Run the template

    1. Go to the Dataflow Create job from template page.
    2. Go to Create job from template
    3. In the Job name field, enter a unique job name.
    4. Optional: For Regional endpoint, select a value from the drop-down menu. The default region is us-central1.

      For a list of regions where you can run a Dataflow job, see Dataflow locations.

    5. From the Dataflow template drop-down menu, select the Pub/Sub to BigQuery template.
    6. In the provided parameter fields, enter your parameter values.
    7. Optional: To switch from exactly-once processing to at-least-once streaming mode, select At Least Once.
    8. Click Run job.

    In your shell or terminal, run the template:

    gcloud dataflow flex-template run JOB_NAME \
        --gcs-location gs://dataflow-templates-REGION_NAME/VERSION/flex/PubSub_to_BigQuery_Flex \
        --template-file-gcs-location REGION_NAME \
        --staging-location STAGING_LOCATION \
        --parameters \
    inputTopic=projects/PROJECT_ID/topics/TOPIC_NAME,\
    outputTableSpec=PROJECT_ID:DATASET.TABLE_NAME

    Replace the following:

    • JOB_NAME: a unique job name of your choice
    • REGION_NAME: the region where you want to deploy your Dataflow job—for example, us-central1
    • VERSION: the version of the template that you want to use

      You can use the following values:

    • STAGING_LOCATION: the location for staging local files (for example, gs://your-bucket/staging)
    • TOPIC_NAME: your Pub/Sub topic name
    • DATASET: your BigQuery dataset
    • TABLE_NAME: your BigQuery table name

    To run the template using the REST API, send an HTTP POST request. For more information on the API and its authorization scopes, see projects.templates.launch.

    POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/flexTemplates:launch
    {
       "launch_parameter": {
          "jobName": "JOB_NAME",
          "parameters": {
           "inputTopic": "projects/PROJECT_ID/subscriptions/SUBSCRIPTION_NAME",
           "outputTableSpec": "PROJECT_ID:DATASET.TABLE_NAME"
          },
          "containerSpecGcsPath": "gs://dataflow-templates-LOCATION/VERSION/flex/PubSub_to_BigQuery_Flex",
       }
    }

    Replace the following:

    • PROJECT_ID: the Google Cloud project ID where you want to run the Dataflow job
    • JOB_NAME: a unique job name of your choice
    • LOCATION: the region where you want to deploy your Dataflow job—for example, us-central1
    • VERSION: the version of the template that you want to use

      You can use the following values:

    • STAGING_LOCATION: the location for staging local files (for example, gs://your-bucket/staging)
    • TOPIC_NAME: your Pub/Sub topic name
    • DATASET: your BigQuery dataset
    • TABLE_NAME: your BigQuery table name
    Java
    /*
     * Copyright (C) 2018 Google LLC
     *
     * Licensed under the Apache License, Version 2.0 (the "License"); you may not
     * use this file except in compliance with the License. You may obtain a copy of
     * the License at
     *
     *   http://www.apache.org/licenses/LICENSE-2.0
     *
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
     * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
     * License for the specific language governing permissions and limitations under
     * the License.
     */
    package com.google.cloud.teleport.v2.templates;
    
    import static com.google.cloud.teleport.v2.templates.TextToBigQueryStreaming.wrapBigQueryInsertError;
    
    import com.google.api.services.bigquery.model.TableRow;
    import com.google.cloud.teleport.metadata.MultiTemplate;
    import com.google.cloud.teleport.metadata.Template;
    import com.google.cloud.teleport.metadata.TemplateCategory;
    import com.google.cloud.teleport.metadata.TemplateParameter;
    import com.google.cloud.teleport.v2.coders.FailsafeElementCoder;
    import com.google.cloud.teleport.v2.common.UncaughtExceptionLogger;
    import com.google.cloud.teleport.v2.options.BigQueryStorageApiStreamingOptions;
    import com.google.cloud.teleport.v2.templates.PubSubToBigQuery.Options;
    import com.google.cloud.teleport.v2.transforms.BigQueryConverters.FailsafeJsonToTableRow;
    import com.google.cloud.teleport.v2.transforms.ErrorConverters;
    import com.google.cloud.teleport.v2.transforms.JavascriptTextTransformer.FailsafeJavascriptUdf;
    import com.google.cloud.teleport.v2.transforms.PythonExternalTextTransformer;
    import com.google.cloud.teleport.v2.transforms.PythonExternalTextTransformer.PythonExternalTextTransformerOptions;
    import com.google.cloud.teleport.v2.transforms.PythonExternalTextTransformer.RowToPubSubFailsafeElementFn;
    import com.google.cloud.teleport.v2.utils.BigQueryIOUtils;
    import com.google.cloud.teleport.v2.utils.ResourceUtils;
    import com.google.cloud.teleport.v2.values.FailsafeElement;
    import com.google.common.base.Strings;
    import com.google.common.collect.ImmutableList;
    import java.nio.charset.StandardCharsets;
    import org.apache.beam.runners.dataflow.options.DataflowPipelineWorkerPoolOptions;
    import org.apache.beam.sdk.Pipeline;
    import org.apache.beam.sdk.PipelineResult;
    import org.apache.beam.sdk.coders.CoderRegistry;
    import org.apache.beam.sdk.coders.StringUtf8Coder;
    import org.apache.beam.sdk.io.gcp.bigquery.BigQueryIO;
    import org.apache.beam.sdk.io.gcp.bigquery.BigQueryIO.Write.CreateDisposition;
    import org.apache.beam.sdk.io.gcp.bigquery.BigQueryIO.Write.WriteDisposition;
    import org.apache.beam.sdk.io.gcp.bigquery.BigQueryInsertError;
    import org.apache.beam.sdk.io.gcp.bigquery.InsertRetryPolicy;
    import org.apache.beam.sdk.io.gcp.bigquery.WriteResult;
    import org.apache.beam.sdk.io.gcp.pubsub.PubsubIO;
    import org.apache.beam.sdk.io.gcp.pubsub.PubsubMessage;
    import org.apache.beam.sdk.io.gcp.pubsub.PubsubMessageWithAttributesCoder;
    import org.apache.beam.sdk.options.Default;
    import org.apache.beam.sdk.options.PipelineOptions;
    import org.apache.beam.sdk.options.PipelineOptionsFactory;
    import org.apache.beam.sdk.transforms.DoFn;
    import org.apache.beam.sdk.transforms.Flatten;
    import org.apache.beam.sdk.transforms.MapElements;
    import org.apache.beam.sdk.transforms.PTransform;
    import org.apache.beam.sdk.transforms.ParDo;
    import org.apache.beam.sdk.values.PCollection;
    import org.apache.beam.sdk.values.PCollectionList;
    import org.apache.beam.sdk.values.PCollectionTuple;
    import org.apache.beam.sdk.values.Row;
    import org.apache.beam.sdk.values.TupleTag;
    import org.apache.beam.sdk.values.TupleTagList;
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    
    /**
     * The {@link PubSubToBigQuery} pipeline is a streaming pipeline which ingests data in JSON format
     * from Cloud Pub/Sub, executes a UDF, and outputs the resulting records to BigQuery. Any errors
     * which occur in the transformation of the data or execution of the UDF will be output to a
     * separate errors table in BigQuery. The errors table will be created if it does not exist prior to
     * execution. Both output and error tables are specified by the user as template parameters.
     *
     * <p><b>Pipeline Requirements</b>
     *
     * <ul>
     *   <li>The Pub/Sub topic exists.
     *   <li>The BigQuery output table exists.
     * </ul>
     *
     * <p>Check out <a
     * href="https://github.com/GoogleCloudPlatform/DataflowTemplates/blob/main/v2/googlecloud-to-googlecloud/README_PubSub_to_BigQuery_Flex.md">README</a>
     * for instructions on how to use or modify this template.
     */
    @MultiTemplate({
      @Template(
          name = "PubSub_to_BigQuery_Flex",
          category = TemplateCategory.STREAMING,
          displayName = "Pub/Sub to BigQuery",
          description =
              "The Pub/Sub to BigQuery template is a streaming pipeline that reads JSON-formatted messages from a Pub/Sub topic or subscription, and writes them to a BigQuery table. "
                  + "You can use the template as a quick solution to move Pub/Sub data to BigQuery. "
                  + "The template reads JSON-formatted messages from Pub/Sub and converts them to BigQuery elements.",
          optionsClass = Options.class,
          skipOptions = {
            "pythonExternalTextTransformGcsPath",
            "pythonExternalTextTransformFunctionName",
          },
          flexContainerName = "pubsub-to-bigquery",
          documentation =
              "https://cloud.google.com/dataflow/docs/guides/templates/provided/pubsub-to-bigquery",
          contactInformation = "https://cloud.google.com/support",
          requirements = {
            "The <a href=\"https://cloud.google.com/pubsub/docs/reference/rest/v1/PubsubMessage\">`data` field</a> of Pub/Sub messages must use the JSON format, described in this <a href=\"https://developers.google.com/api-client-library/java/google-http-java-client/json\">JSON guide</a>. For example, messages with values in the `data` field formatted as `{\"k1\":\"v1\", \"k2\":\"v2\"}` can be inserted into a BigQuery table with two columns, named `k1` and `k2`, with a string data type.",
            "The output table must exist prior to running the pipeline. The table schema must match the input JSON objects."
          },
          streaming = true,
          supportsAtLeastOnce = true,
          supportsExactlyOnce = true),
      @Template(
          name = "PubSub_to_BigQuery_Xlang",
          category = TemplateCategory.STREAMING,
          displayName = "Pub/Sub to BigQuery with Python UDFs",
          type = Template.TemplateType.XLANG,
          description =
              "The Pub/Sub to BigQuery template is a streaming pipeline that reads JSON-formatted messages from a Pub/Sub topic or subscription, and writes them to a BigQuery table. "
                  + "You can use the template as a quick solution to move Pub/Sub data to BigQuery. "
                  + "The template reads JSON-formatted messages from Pub/Sub and converts them to BigQuery elements.",
          optionsClass = Options.class,
          skipOptions = {
            "javascriptTextTransformGcsPath",
            "javascriptTextTransformFunctionName",
            "javascriptTextTransformReloadIntervalMinutes"
          },
          flexContainerName = "pubsub-to-bigquery-xlang",
          documentation =
              "https://cloud.google.com/dataflow/docs/guides/templates/provided/pubsub-to-bigquery",
          contactInformation = "https://cloud.google.com/support",
          requirements = {
            "The <a href=\"https://cloud.google.com/pubsub/docs/reference/rest/v1/PubsubMessage\">`data` field</a> of Pub/Sub messages must use the JSON format, described in this <a href=\"https://developers.google.com/api-client-library/java/google-http-java-client/json\">JSON guide</a>. For example, messages with values in the `data` field formatted as `{\"k1\":\"v1\", \"k2\":\"v2\"}` can be inserted into a BigQuery table with two columns, named `k1` and `k2`, with a string data type.",
            "The output table must exist prior to running the pipeline. The table schema must match the input JSON objects."
          },
          streaming = true,
          supportsAtLeastOnce = true,
          supportsExactlyOnce = true)
    })
    public class PubSubToBigQuery {
    
      /** The log to output status messages to. */
      private static final Logger LOG = LoggerFactory.getLogger(PubSubToBigQuery.class);
    
      /** The tag for the main output for the UDF. */
      public static final TupleTag<FailsafeElement<PubsubMessage, String>> UDF_OUT =
          new TupleTag<FailsafeElement<PubsubMessage, String>>() {};
    
      /** The tag for the main output of the json transformation. */
      public static final TupleTag<TableRow> TRANSFORM_OUT = new TupleTag<TableRow>() {};
    
      /** The tag for the dead-letter output of the udf. */
      public static final TupleTag<FailsafeElement<PubsubMessage, String>> UDF_DEADLETTER_OUT =
          new TupleTag<FailsafeElement<PubsubMessage, String>>() {};
    
      /** The tag for the dead-letter output of the json to table row transform. */
      public static final TupleTag<FailsafeElement<PubsubMessage, String>> TRANSFORM_DEADLETTER_OUT =
          new TupleTag<FailsafeElement<PubsubMessage, String>>() {};
    
      /** The default suffix for error tables if dead letter table is not specified. */
      public static final String DEFAULT_DEADLETTER_TABLE_SUFFIX = "_error_records";
    
      /** Pubsub message/string coder for pipeline. */
      public static final FailsafeElementCoder<PubsubMessage, String> CODER =
          FailsafeElementCoder.of(PubsubMessageWithAttributesCoder.of(), StringUtf8Coder.of());
    
      /** String/String Coder for FailsafeElement. */
      public static final FailsafeElementCoder<String, String> FAILSAFE_ELEMENT_CODER =
          FailsafeElementCoder.of(StringUtf8Coder.of(), StringUtf8Coder.of());
    
      /**
       * The {@link Options} class provides the custom execution options passed by the executor at the
       * command-line.
       */
      public interface Options
          extends PipelineOptions,
              BigQueryStorageApiStreamingOptions,
              PythonExternalTextTransformerOptions,
              DataflowPipelineWorkerPoolOptions {
        @TemplateParameter.BigQueryTable(
            order = 1,
            groupName = "Target",
            description = "BigQuery output table",
            helpText =
                "The BigQuery table to write to, formatted as `PROJECT_ID:DATASET_NAME.TABLE_NAME`.")
        String getOutputTableSpec();
    
        void setOutputTableSpec(String value);
    
        @TemplateParameter.PubsubTopic(
            order = 2,
            groupName = "Source",
            optional = true,
            description = "Input Pub/Sub topic",
            helpText =
                "The Pub/Sub topic to read from, formatted as `projects/<PROJECT_ID>/topics/<TOPIC_NAME>`.")
        String getInputTopic();
    
        void setInputTopic(String value);
    
        @TemplateParameter.PubsubSubscription(
            order = 3,
            groupName = "Source",
            optional = true,
            description = "Pub/Sub input subscription",
            helpText =
                "The Pub/Sub subscription to read from, "
                    + "formatted as `projects/<PROJECT_ID>/subscriptions/<SUBCRIPTION_NAME>`.")
        String getInputSubscription();
    
        void setInputSubscription(String value);
    
        @TemplateParameter.BigQueryTable(
            order = 4,
            optional = true,
            description =
                "Table for messages failed to reach the output table (i.e., Deadletter table)",
            helpText =
                "The BigQuery table to use for messages that failed to reach the output table, "
                    + "formatted as `PROJECT_ID:DATASET_NAME.TABLE_NAME`. If the table "
                    + "doesn't exist, it is created when the pipeline runs. "
                    + "If this parameter is not specified, "
                    + "the value `OUTPUT_TABLE_SPEC_error_records` is used instead.")
        String getOutputDeadletterTable();
    
        void setOutputDeadletterTable(String value);
    
        @TemplateParameter.Boolean(
            order = 5,
            optional = true,
            parentName = "useStorageWriteApi",
            parentTriggerValues = {"true"},
            description = "Use at at-least-once semantics in BigQuery Storage Write API",
            helpText =
                "When using the Storage Write API, specifies the write semantics. "
                    + "To use at-least-once semantics (https://beam.apache.org/documentation/io/built-in/google-bigquery/#at-least-once-semantics)"
                    + ", set this parameter to true. "
                    + "To use exactly-once semantics, set the parameter to `false`. "
                    + "This parameter applies only when `useStorageWriteApi` is `true`. "
                    + "The default value is `false`.")
        @Default.Boolean(false)
        @Override
        Boolean getUseStorageWriteApiAtLeastOnce();
    
        void setUseStorageWriteApiAtLeastOnce(Boolean value);
      }
    
      /**
       * The main entry-point for pipeline execution. This method will start the pipeline but will not
       * wait for it's execution to finish. If blocking execution is required, use the {@link
       * PubSubToBigQuery#run(Options)} method to start the pipeline and invoke {@code
       * result.waitUntilFinish()} on the {@link PipelineResult}.
       *
       * @param args The command-line args passed by the executor.
       */
      public static void main(String[] args) {
        UncaughtExceptionLogger.register();
    
        Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);
        BigQueryIOUtils.validateBQStorageApiOptionsStreaming(options);
        //    options.setWorkerDiskType(
        //
        // "compute.googleapis.com/projects/cloud-teleport-testing/zones/us-central1-a/diskTypes/t2a-test");
    
        run(options);
      }
    
      /**
       * Runs the pipeline to completion with the specified options. This method does not wait until the
       * pipeline is finished before returning. Invoke {@code result.waitUntilFinish()} on the result
       * object to block until the pipeline is finished running if blocking programmatic execution is
       * required.
       *
       * @param options The execution options.
       * @return The pipeline result.
       */
      public static PipelineResult run(Options options) {
    
        boolean useInputSubscription = !Strings.isNullOrEmpty(options.getInputSubscription());
        boolean useInputTopic = !Strings.isNullOrEmpty(options.getInputTopic());
        if (useInputSubscription == useInputTopic) {
          throw new IllegalArgumentException(
              "Either input topic or input subscription must be provided, but not both.");
        }
    
        Pipeline pipeline = Pipeline.create(options);
    
        CoderRegistry coderRegistry = pipeline.getCoderRegistry();
        coderRegistry.registerCoderForType(CODER.getEncodedTypeDescriptor(), CODER);
    
        /*
         * Steps:
         *  1) Read messages in from Pub/Sub
         *  2) Transform the PubsubMessages into TableRows
         *     - Transform message payload via UDF
         *     - Convert UDF result to TableRow objects
         *  3) Write successful records out to BigQuery
         *  4) Write failed records out to BigQuery
         */
    
        /*
         * Step #1: Read messages in from Pub/Sub
         * Either from a Subscription or Topic
         */
    
        PCollection<PubsubMessage> messages = null;
        if (useInputSubscription) {
          messages =
              pipeline.apply(
                  "ReadPubSubSubscription",
                  PubsubIO.readMessagesWithAttributes()
                      .fromSubscription(options.getInputSubscription()));
        } else {
          messages =
              pipeline.apply(
                  "ReadPubSubTopic",
                  PubsubIO.readMessagesWithAttributes().fromTopic(options.getInputTopic()));
        }
    
        PCollectionTuple convertedTableRows =
            messages
                /*
                 * Step #2: Transform the PubsubMessages into TableRows
                 */
                .apply("ConvertMessageToTableRow", new PubsubMessageToTableRow(options));
    
        /*
         * Step #3: Write the successful records out to BigQuery
         */
        WriteResult writeResult =
            convertedTableRows
                .get(TRANSFORM_OUT)
                .apply(
                    "WriteSuccessfulRecords",
                    BigQueryIO.writeTableRows()
                        .withoutValidation()
                        .withCreateDisposition(CreateDisposition.CREATE_NEVER)
                        .withWriteDisposition(WriteDisposition.WRITE_APPEND)
                        .withExtendedErrorInfo()
                        .withFailedInsertRetryPolicy(InsertRetryPolicy.retryTransientErrors())
                        .to(options.getOutputTableSpec()));
    
        /*
         * Step 3 Contd.
         * Elements that failed inserts into BigQuery are extracted and converted to FailsafeElement
         */
        PCollection<FailsafeElement<String, String>> failedInserts =
            BigQueryIOUtils.writeResultToBigQueryInsertErrors(writeResult, options)
                .apply(
                    "WrapInsertionErrors",
                    MapElements.into(FAILSAFE_ELEMENT_CODER.getEncodedTypeDescriptor())
                        .via((BigQueryInsertError e) -> wrapBigQueryInsertError(e)))
                .setCoder(FAILSAFE_ELEMENT_CODER);
    
        /*
         * Step #4: Write records that failed table row transformation
         * or conversion out to BigQuery deadletter table.
         */
        PCollectionList.of(
                ImmutableList.of(
                    convertedTableRows.get(UDF_DEADLETTER_OUT),
                    convertedTableRows.get(TRANSFORM_DEADLETTER_OUT)))
            .apply("Flatten", Flatten.pCollections())
            .apply(
                "WriteFailedRecords",
                ErrorConverters.WritePubsubMessageErrors.newBuilder()
                    .setErrorRecordsTable(
                        !Strings.isNullOrEmpty(options.getOutputDeadletterTable())
                            ? options.getOutputDeadletterTable()
                            : options.getOutputTableSpec() + DEFAULT_DEADLETTER_TABLE_SUFFIX)
                    .setErrorRecordsTableSchema(ResourceUtils.getDeadletterTableSchemaJson())
                    .build());
    
        // 5) Insert records that failed insert into deadletter table
        failedInserts.apply(
            "WriteFailedRecords",
            ErrorConverters.WriteStringMessageErrors.newBuilder()
                .setErrorRecordsTable(
                    !Strings.isNullOrEmpty(options.getOutputDeadletterTable())
                        ? options.getOutputDeadletterTable()
                        : options.getOutputTableSpec() + DEFAULT_DEADLETTER_TABLE_SUFFIX)
                .setErrorRecordsTableSchema(ResourceUtils.getDeadletterTableSchemaJson())
                .build());
    
        return pipeline.run();
      }
    
      /**
       * The {@link PubsubMessageToTableRow} class is a {@link PTransform} which transforms incoming
       * {@link PubsubMessage} objects into {@link TableRow} objects for insertion into BigQuery while
       * applying an optional UDF to the input. The executions of the UDF and transformation to {@link
       * TableRow} objects is done in a fail-safe way by wrapping the element with it's original payload
       * inside the {@link FailsafeElement} class. The {@link PubsubMessageToTableRow} transform will
       * output a {@link PCollectionTuple} which contains all output and dead-letter {@link
       * PCollection}.
       *
       * <p>The {@link PCollectionTuple} output will contain the following {@link PCollection}:
       *
       * <ul>
       *   <li>{@link PubSubToBigQuery#UDF_OUT} - Contains all {@link FailsafeElement} records
       *       successfully processed by the optional UDF.
       *   <li>{@link PubSubToBigQuery#UDF_DEADLETTER_OUT} - Contains all {@link FailsafeElement}
       *       records which failed processing during the UDF execution.
       *   <li>{@link PubSubToBigQuery#TRANSFORM_OUT} - Contains all records successfully converted from
       *       JSON to {@link TableRow} objects.
       *   <li>{@link PubSubToBigQuery#TRANSFORM_DEADLETTER_OUT} - Contains all {@link FailsafeElement}
       *       records which couldn't be converted to table rows.
       * </ul>
       */
      static class PubsubMessageToTableRow
          extends PTransform<PCollection<PubsubMessage>, PCollectionTuple> {
    
        private final Options options;
    
        PubsubMessageToTableRow(Options options) {
          this.options = options;
        }
    
        @Override
        public PCollectionTuple expand(PCollection<PubsubMessage> input) {
          boolean useJavascriptUdf =
              !Strings.isNullOrEmpty(options.getJavascriptTextTransformGcsPath());
          boolean usePythonUdf =
              !Strings.isNullOrEmpty(options.getPythonExternalTextTransformGcsPath());
          if (useJavascriptUdf && usePythonUdf) {
            throw new IllegalArgumentException(
                "Either javascript or Python gcs path must be provided, but not both.");
          }
          PCollectionTuple udfOut;
          if (usePythonUdf) {
            PCollection<Row> udfRowsOut =
                input
                    // Map the incoming messages into FailsafeElements so we can recover from failures
                    // across multiple transforms.
                    .apply(
                        "MapToRecord",
                        PythonExternalTextTransformer.FailsafeRowPythonExternalUdf
                            .pubSubMappingFunction())
                    .setRowSchema(PythonExternalTextTransformer.FailsafeRowPythonExternalUdf.ROW_SCHEMA)
                    .apply(
                        "InvokeUDF",
                        PythonExternalTextTransformer.FailsafePythonExternalUdf.newBuilder()
                            .setFileSystemPath(options.getPythonExternalTextTransformGcsPath())
                            .setFunctionName(options.getPythonExternalTextTransformFunctionName())
                            .build());
            udfOut =
                udfRowsOut.apply(
                    "MapRowsToFailsafeElements",
                    ParDo.of(new RowToPubSubFailsafeElementFn(UDF_OUT, UDF_DEADLETTER_OUT))
                        .withOutputTags(UDF_OUT, TupleTagList.of(UDF_DEADLETTER_OUT)));
          } else {
            udfOut =
                input
                    // Map the incoming messages into FailsafeElements so we can recover from failures
                    // across multiple transforms.
                    .apply("MapToRecord", ParDo.of(new PubsubMessageToFailsafeElementFn()))
                    .apply(
                        "InvokeUDF",
                        FailsafeJavascriptUdf.<PubsubMessage>newBuilder()
                            .setFileSystemPath(options.getJavascriptTextTransformGcsPath())
                            .setFunctionName(options.getJavascriptTextTransformFunctionName())
                            .setReloadIntervalMinutes(
                                options.getJavascriptTextTransformReloadIntervalMinutes())
                            .setSuccessTag(UDF_OUT)
                            .setFailureTag(UDF_DEADLETTER_OUT)
                            .build());
          }
    
          // Convert the records which were successfully processed by the UDF into TableRow objects.
          PCollectionTuple jsonToTableRowOut =
              udfOut
                  .get(UDF_OUT)
                  .apply(
                      "JsonToTableRow",
                      FailsafeJsonToTableRow.<PubsubMessage>newBuilder()
                          .setSuccessTag(TRANSFORM_OUT)
                          .setFailureTag(TRANSFORM_DEADLETTER_OUT)
                          .build());
    
          // Re-wrap the PCollections so we can return a single PCollectionTuple
          return PCollectionTuple.of(UDF_OUT, udfOut.get(UDF_OUT))
              .and(UDF_DEADLETTER_OUT, udfOut.get(UDF_DEADLETTER_OUT))
              .and(TRANSFORM_OUT, jsonToTableRowOut.get(TRANSFORM_OUT))
              .and(TRANSFORM_DEADLETTER_OUT, jsonToTableRowOut.get(TRANSFORM_DEADLETTER_OUT));
        }
      }
    
      /**
       * The {@link PubsubMessageToFailsafeElementFn} wraps an incoming {@link PubsubMessage} with the
       * {@link FailsafeElement} class so errors can be recovered from and the original message can be
       * output to a error records table.
       */
      static class PubsubMessageToFailsafeElementFn
          extends DoFn<PubsubMessage, FailsafeElement<PubsubMessage, String>> {
        @ProcessElement
        public void processElement(ProcessContext context) {
          PubsubMessage message = context.element();
          context.output(
              FailsafeElement.of(message, new String(message.getPayload(), StandardCharsets.UTF_8)));
        }
      }
    }
    

    What's next