Modello Testo Cloud Storage a Datastore [Ritiro programmato]

Questo modello è deprecato e verrà rimosso nel terzo trimestre del 2023. Esegui la migrazione al modello Testo Cloud Storage in Firestore.

Il modello Cloud Storage Text to Datastore è una pipeline batch che legge dai file di testo archiviati in Cloud Storage e scrive entità con codifica JSON in Datastore. Ogni riga nei file di testo di input deve essere nel formato JSON specificato.

Requisiti della pipeline

  • Datastore deve essere abilitato nel progetto di destinazione.

Parametri del modello

Parametri obbligatori

  • textReadPattern: un pattern di percorso Cloud Storage che specifica la posizione dei file di dati di testo. Ad esempio, gs://mybucket/somepath/*.json.
  • datastoreWriteProjectId: l'ID del progetto Google Cloud in cui scrivere le entità Datastore.
  • errorWritePath: il file di output del log degli errori da utilizzare per gli errori di scrittura che si verificano durante l'elaborazione. Ad esempio, gs://your-bucket/errors/.

Parametri facoltativi

  • javascriptTextTransformGcsPath: l'URI Cloud Storage del file .js che definisce la funzione JavaScript definita dall'utente (UDF) da utilizzare. Ad esempio, gs://my-bucket/my-udfs/my_file.js.
  • javascriptTextTransformFunctionName: il nome della funzione definita dall'utente (UDF) JavaScript da utilizzare. Ad esempio, se il codice della funzione JavaScript è myTransform(inJson) { /*...do stuff...*/ }, il nome della funzione è myTransform. Per esempi di funzioni JavaScript definite dall'utente, consulta Esempi di funzioni UDF (https://github.com/GoogleCloudPlatform/DataflowTemplates#udf-examples).
  • datastoreHintNumWorkers: suggerimento per il numero previsto di worker nel passaggio di limitazione del ramp-up del datastore. Il valore predefinito è 500.

Esegui il modello

  1. Vai alla pagina Crea job da modello di Dataflow.
  2. Vai a Crea job da modello
  3. Nel campo Nome job, inserisci un nome univoco per il job.
  4. (Facoltativo) Per Endpoint a livello di regione, seleziona un valore dal menu a discesa. La regione predefinita è us-central1.

    Per un elenco delle regioni in cui puoi eseguire un job Dataflow, consulta Località di Dataflow.

  5. Nel menu a discesa Modello di flusso di dati, seleziona the Text Files on Cloud Storage to Datastore template.
  6. Nei campi dei parametri forniti, inserisci i valori dei parametri.
  7. Fai clic su Esegui job.

Nella shell o nel terminale, esegui il modello:

gcloud dataflow jobs run JOB_NAME \
    --gcs-location gs://dataflow-templates-REGION_NAME/VERSION/GCS_Text_to_Datastore \
    --region REGION_NAME \
    --parameters \
textReadPattern=PATH_TO_INPUT_TEXT_FILES,\
javascriptTextTransformGcsPath=PATH_TO_JAVASCRIPT_UDF_FILE,\
javascriptTextTransformFunctionName=JAVASCRIPT_FUNCTION,\
datastoreWriteProjectId=PROJECT_ID,\
errorWritePath=ERROR_FILE_WRITE_PATH

Sostituisci quanto segue:

  • JOB_NAME: un nome di job univoco a tua scelta
  • VERSION: la versione del modello che vuoi utilizzare

    Puoi utilizzare i seguenti valori:

  • REGION_NAME: la regione in cui vuoi eseguire il deployment del job Dataflow, ad esempio us-central1
  • PATH_TO_INPUT_TEXT_FILES: il pattern dei file di input su Cloud Storage
  • JAVASCRIPT_FUNCTION: il nome della funzione definita dall'utente (UDF) JavaScript che vuoi utilizzare

    Ad esempio, se il codice della funzione JavaScript è myTransform(inJson) { /*...do stuff...*/ }, il nome della funzione è myTransform. Per esempi di funzioni JavaScript definite dall'utente, consulta Esempi di funzioni UDF.

  • PATH_TO_JAVASCRIPT_UDF_FILE: l'URI Cloud Storage del file .js che definisce la funzione JavaScript definita dall'utente (UDF) che vuoi utilizzare, ad esempio gs://my-bucket/my-udfs/my_file.js
  • ERROR_FILE_WRITE_PATH: il percorso del file di errore su Cloud Storage che preferisci

Per eseguire il modello utilizzando l'API REST, invia una richiesta POST HTTP. Per ulteriori informazioni sull'API e sui relativi ambiti di autorizzazione, consulta projects.templates.launch.

POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/templates:launch?gcsPath=gs://dataflow-templates-LOCATION/VERSION/GCS_Text_to_Datastore
{
   "jobName": "JOB_NAME",
   "parameters": {
       "textReadPattern": "PATH_TO_INPUT_TEXT_FILES",
       "javascriptTextTransformGcsPath": "PATH_TO_JAVASCRIPT_UDF_FILE",
       "javascriptTextTransformFunctionName": "JAVASCRIPT_FUNCTION",
       "datastoreWriteProjectId": "PROJECT_ID",
       "errorWritePath": "ERROR_FILE_WRITE_PATH"
   },
   "environment": { "zone": "us-central1-f" }
}

Sostituisci quanto segue:

  • PROJECT_ID: l'ID del progetto Google Cloud in cui vuoi eseguire il job Dataflow
  • JOB_NAME: un nome di job univoco a tua scelta
  • VERSION: la versione del modello che vuoi utilizzare

    Puoi utilizzare i seguenti valori:

  • LOCATION: la regione in cui vuoi eseguire il deployment del job Dataflow, ad esempio us-central1
  • PATH_TO_INPUT_TEXT_FILES: il pattern dei file di input su Cloud Storage
  • JAVASCRIPT_FUNCTION: il nome della funzione definita dall'utente (UDF) JavaScript che vuoi utilizzare

    Ad esempio, se il codice della funzione JavaScript è myTransform(inJson) { /*...do stuff...*/ }, il nome della funzione è myTransform. Per esempi di funzioni JavaScript definite dall'utente, consulta Esempi di funzioni UDF.

  • PATH_TO_JAVASCRIPT_UDF_FILE: l'URI Cloud Storage del file .js che definisce la funzione JavaScript definita dall'utente (UDF) che vuoi utilizzare, ad esempio gs://my-bucket/my-udfs/my_file.js
  • ERROR_FILE_WRITE_PATH: il percorso del file di errore su Cloud Storage che preferisci
Java
/*
 * Copyright (C) 2018 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */
package com.google.cloud.teleport.templates;

import com.google.cloud.teleport.metadata.MultiTemplate;
import com.google.cloud.teleport.metadata.Template;
import com.google.cloud.teleport.metadata.TemplateCategory;
import com.google.cloud.teleport.templates.TextToDatastore.TextToDatastoreOptions;
import com.google.cloud.teleport.templates.common.DatastoreConverters.DatastoreWriteOptions;
import com.google.cloud.teleport.templates.common.DatastoreConverters.WriteJsonEntities;
import com.google.cloud.teleport.templates.common.ErrorConverters.ErrorWriteOptions;
import com.google.cloud.teleport.templates.common.ErrorConverters.LogErrors;
import com.google.cloud.teleport.templates.common.FirestoreNestedValueProvider;
import com.google.cloud.teleport.templates.common.JavascriptTextTransformer.JavascriptTextTransformerOptions;
import com.google.cloud.teleport.templates.common.JavascriptTextTransformer.TransformTextViaJavascript;
import com.google.cloud.teleport.templates.common.TextConverters.FilesystemReadOptions;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.io.TextIO;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.ValueProvider;
import org.apache.beam.sdk.values.TupleTag;

/**
 * Dataflow template which reads from a Text Source and writes JSON encoded Entities into Datastore.
 * The JSON is expected to be in the format of: <a
 * href="https://cloud.google.com/datastore/docs/reference/rest/v1/Entity">Entity</a>
 *
 * <p>Check out <a
 * href="https://github.com/GoogleCloudPlatform/DataflowTemplates/blob/main/v1/README_GCS_Text_to_Datastore.md">README
 * Datastore</a> or <a
 * href="https://github.com/GoogleCloudPlatform/DataflowTemplates/blob/main/v1/README_GCS_Text_to_Firestore.md">README
 * Firestore</a> for instructions on how to use or modify this template.
 */
@MultiTemplate({
  @Template(
      name = "GCS_Text_to_Datastore",
      category = TemplateCategory.LEGACY,
      displayName = "Text Files on Cloud Storage to Datastore [Deprecated]",
      description =
          "The Cloud Storage Text to Datastore template is a batch pipeline that reads from text files stored in "
              + "Cloud Storage and writes JSON encoded Entities to Datastore. "
              + "Each line in the input text files must be in the <a href=\"https://cloud.google.com/datastore/docs/reference/rest/v1/Entity\">specified JSON format</a>.",
      optionsClass = TextToDatastoreOptions.class,
      skipOptions = {
        "firestoreWriteProjectId",
        "firestoreWriteEntityKind",
        "firestoreWriteNamespace",
        "firestoreHintNumWorkers",
        "javascriptTextTransformReloadIntervalMinutes",
        // This template doesn't use neither firestoreWriteEntityKind/Namespace
        // nor datastoreWriteEntityKind/Namespace pipeline options.
        "datastoreWriteEntityKind",
        "datastoreWriteNamespace"
      },
      documentation =
          "https://cloud.google.com/dataflow/docs/guides/templates/provided/cloud-storage-to-datastore",
      contactInformation = "https://cloud.google.com/support",
      preview = true,
      requirements = {"Datastore must be enabled in the destination project."}),
  @Template(
      name = "GCS_Text_to_Firestore",
      category = TemplateCategory.BATCH,
      displayName = "Text Files on Cloud Storage to Firestore (Datastore mode)",
      description =
          "The Cloud Storage Text to Firestore template is a batch pipeline that reads from text files stored in "
              + "Cloud Storage and writes JSON encoded Entities to Firestore. "
              + "Each line in the input text files must be in the <a href=\"https://cloud.google.com/datastore/docs/reference/rest/v1/Entity\">specified JSON format</a>.",
      optionsClass = TextToDatastoreOptions.class,
      skipOptions = {
        "datastoreWriteProjectId",
        "datastoreWriteEntityKind",
        "datastoreWriteNamespace",
        "datastoreHintNumWorkers",
        "javascriptTextTransformReloadIntervalMinutes",
        // This template doesn't use neither firestoreWriteEntityKind/Namespace
        // nor datastoreWriteEntityKind/Namespace pipeline options.
        "firestoreWriteEntityKind",
        "firestoreWriteNamespace"
      },
      documentation =
          "https://cloud.google.com/dataflow/docs/guides/templates/provided/cloud-storage-to-firestore",
      contactInformation = "https://cloud.google.com/support",
      requirements = {"Firestore must be enabled in the destination project."})
})
public class TextToDatastore {

  public static <T> ValueProvider<T> selectProvidedInput(
      ValueProvider<T> datastoreInput, ValueProvider<T> firestoreInput) {
    return new FirestoreNestedValueProvider(datastoreInput, firestoreInput);
  }

  /** TextToDatastore Pipeline Options. */
  public interface TextToDatastoreOptions
      extends PipelineOptions,
          FilesystemReadOptions,
          JavascriptTextTransformerOptions,
          DatastoreWriteOptions,
          ErrorWriteOptions {}

  /**
   * Runs a pipeline which reads from a Text Source, passes the Text to a Javascript UDF, writes the
   * JSON encoded Entities to a TextIO sink.
   *
   * <p>If your Text Source does not contain JSON encoded Entities, then you'll need to supply a
   * Javascript UDF which transforms your data to be JSON encoded Entities.
   *
   * @param args arguments to the pipeline
   */
  public static void main(String[] args) {
    TextToDatastoreOptions options =
        PipelineOptionsFactory.fromArgs(args).withValidation().as(TextToDatastoreOptions.class);

    TupleTag<String> errorTag = new TupleTag<String>("errors") {};

    Pipeline pipeline = Pipeline.create(options);

    pipeline
        .apply(TextIO.read().from(options.getTextReadPattern()))
        .apply(
            TransformTextViaJavascript.newBuilder()
                .setFileSystemPath(options.getJavascriptTextTransformGcsPath())
                .setFunctionName(options.getJavascriptTextTransformFunctionName())
                .build())
        .apply(
            WriteJsonEntities.newBuilder()
                .setProjectId(
                    selectProvidedInput(
                        options.getDatastoreWriteProjectId(), options.getFirestoreWriteProjectId()))
                .setHintNumWorkers(
                    selectProvidedInput(
                        options.getDatastoreHintNumWorkers(), options.getFirestoreHintNumWorkers()))
                .setErrorTag(errorTag)
                .build())
        .apply(
            LogErrors.newBuilder()
                .setErrorWritePath(options.getErrorWritePath())
                .setErrorTag(errorTag)
                .build());

    pipeline.run();
  }
}

Passaggi successivi