Stay organized with collections
Save and categorize content based on your preferences.
The Cloud Storage CSV files to BigQuery pipeline is a batch pipeline that lets you read data from CSV files stored in Cloud Storage and append the result to a BigQuery table.
The CSV files can be uncompressed or compressed in formats listed in the Compression Enum SDK page.
Pipeline requirements
To use this template, your pipeline must meet the following requirements.
BigQuery schema JSON file
Create a JSON file that describes your BigQuery schema.
Ensure that the schema has a top-level JSON array titled BigQuery Schema and that its
contents follow the pattern {"name": "COLUMN_NAME", "type": "DATA_TYPE"}.
The Cloud Storage CSV files to BigQuery batch template doesn't support
importing data into
STRUCT
(Record) fields in the target BigQuery table.
The following JSON describes an example BigQuery schema:
inputFilePattern : The Cloud Storage path to the CSV file that contains the text to process. (Example: gs://your-bucket/path/*.csv).
schemaJSONPath : The Cloud Storage path to the JSON file that defines your BigQuery schema.
outputTable : The name of the BigQuery table that stores your processed data. If you reuse an existing BigQuery table, the data is appended to the destination table.
bigQueryLoadingTemporaryDirectory : The temporary directory to use during the BigQuery loading process. (Example: gs://your-bucket/your-files/temp_dir).
the version name, like 2023-09-12-00_RC00, to use a specific version of the
template, which can be found nested in the respective dated parent folder in the bucket—
gs://dataflow-templates-REGION_NAME/
REGION_NAME:
the region where you want to
deploy your Dataflow job—for example, us-central1
PATH_TO_CSV_DATA: the Cloud Storage path to your
CSV files
PATH_TO_BIGQUERY_SCHEMA_JSON: the Cloud Storage path to
the JSON file containing the schema definition
BIGQUERY_DESTINATION_TABLE: the BigQuery destination table name
BIGQUERY_BAD_RECORDS_TABLE: the BigQuery bad records table name
PATH_TO_TEMP_DIR_ON_GCS: the Cloud Storage path to the
temp directory
DELIMITER: CSV file delimiter
CSV_FORMAT: CSV format specification for parsing records
CONTAINS_HEADERS: whether the CSV files contains headers
CSV_FILE_ENCODING: encoding in the CSV files
API
To run the template using the REST API, send an HTTP POST request. For more information on the
API and its authorization scopes, see
projects.templates.launch.
the version name, like 2023-09-12-00_RC00, to use a specific version of the
template, which can be found nested in the respective dated parent folder in the bucket—
gs://dataflow-templates-REGION_NAME/
LOCATION:
the region where you want to
deploy your Dataflow job—for example, us-central1
PATH_TO_CSV_DATA: the Cloud Storage path to your
CSV files
PATH_TO_BIGQUERY_SCHEMA_JSON: the Cloud Storage path to
the JSON file containing the schema definition
BIGQUERY_DESTINATION_TABLE: the BigQuery destination table name
BIGQUERY_BAD_RECORDS_TABLE: the BigQuery bad records table name
PATH_TO_TEMP_DIR_ON_GCS: the Cloud Storage path to the
temp directory
DELIMITER: CSV file delimiter
CSV_FORMAT: CSV format specification for parsing records
CONTAINS_HEADERS: whether the CSV files contains headers
CSV_FILE_ENCODING: encoding in the CSV files
Template source code
Java
/*
* Copyright (C) 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package com.google.cloud.teleport.templates;
import com.google.api.services.bigquery.model.TableFieldSchema;
import com.google.api.services.bigquery.model.TableRow;
import com.google.api.services.bigquery.model.TableSchema;
import com.google.cloud.teleport.metadata.Template;
import com.google.cloud.teleport.metadata.TemplateCategory;
import com.google.cloud.teleport.metadata.TemplateParameter;
import com.google.cloud.teleport.templates.CSVToBigQuery.Options;
import com.google.cloud.teleport.templates.common.CsvConverters;
import com.google.cloud.teleport.templates.common.CsvConverters.CsvPipelineOptions;
import com.google.common.collect.ImmutableList;
import java.util.ArrayList;
import java.util.List;
import org.apache.beam.runners.dataflow.options.DataflowPipelineOptions;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.io.gcp.bigquery.BigQueryIO;
import org.apache.beam.sdk.io.gcp.bigquery.BigQueryIO.Write.CreateDisposition;
import org.apache.beam.sdk.io.gcp.bigquery.BigQueryIO.Write.WriteDisposition;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.Validation;
import org.apache.beam.sdk.options.ValueProvider;
import org.apache.beam.sdk.options.ValueProvider.NestedValueProvider;
import org.apache.beam.sdk.transforms.DoFn;
import org.apache.beam.sdk.transforms.ParDo;
import org.apache.beam.sdk.values.PCollectionTuple;
import org.apache.beam.sdk.values.TupleTag;
import org.apache.beam.sdk.values.TupleTagList;
import org.apache.beam.vendor.guava.v32_1_2_jre.com.google.common.base.Splitter;
import org.json.JSONArray;
import org.json.JSONObject;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* Templated pipeline to read CSV files from Cloud Storage, and write it to BigQuery.
*
* <p>Check out <a
* href="https://github.com/GoogleCloudPlatform/DataflowTemplates/blob/main/v1/README_GCS_CSV_to_BigQuery.md">README</a>
* for instructions on how to use or modify this template.
*/
@Template(
name = "GCS_CSV_to_BigQuery",
category = TemplateCategory.BATCH,
displayName = "CSV Files on Cloud Storage to BigQuery",
description =
"The Cloud Storage CSV to BigQuery pipeline is a batch pipeline that allows you to read CSV files stored in "
+ "Cloud Storage, and append the result to a BigQuery table. The CSV files can be uncompressed or compressed in formats listed in https://beam.apache.org/releases/javadoc/current/org/apache/beam/sdk/io/Compression.html.",
optionsClass = Options.class,
contactInformation = "https://cloud.google.com/support",
requirements = {
"Create a JSON file that describes your {{bigquery_name_short}} schema.\n"
+ " <p>Ensure that there is a top-level JSON array titled <code>BigQuery Schema</code> and that its\n"
+ " contents follow the pattern <code>{\"name\": \"COLUMN_NAME\", \"type\": \"DATA_TYPE\"}</code>.</p>\n"
+ " <p>The following JSON describes an example BigQuery schema:</p>\n"
+ "<pre class=\"prettyprint lang-json\">\n"
+ "{\n"
+ " \"BigQuery Schema\": [\n"
+ " {\n"
+ " \"name\": \"location\",\n"
+ " \"type\": \"STRING\"\n"
+ " },\n"
+ " {\n"
+ " \"name\": \"name\",\n"
+ " \"type\": \"STRING\"\n"
+ " },\n"
+ " {\n"
+ " \"name\": \"age\",\n"
+ " \"type\": \"STRING\"\n"
+ " },\n"
+ " {\n"
+ " \"name\": \"color\",\n"
+ " \"type\": \"STRING\"\n"
+ " },\n"
+ " {\n"
+ " \"name\": \"coffee\",\n"
+ " \"type\": \"STRING\"\n"
+ " }\n"
+ " ]\n"
+ "}\n"
})
public class CSVToBigQuery {
/** Options supported by {@link CSVToBigQuery}. */
public interface Options extends DataflowPipelineOptions, CsvPipelineOptions {
@TemplateParameter.Text(
order = 1,
groupName = "Source",
description = "Cloud Storage Input File(s)",
helpText = "The Cloud Storage path to the CSV file that contains the text to process.",
regexes = {"^gs:\\/\\/[^\\n\\r]+$"},
example = "gs://your-bucket/path/*.csv")
ValueProvider<String> getInputFilePattern();
void setInputFilePattern(ValueProvider<String> value);
@TemplateParameter.GcsReadFile(
order = 2,
groupName = "Target",
description = "Cloud Storage location of your BigQuery schema file, described as a JSON",
helpText = "The Cloud Storage path to the JSON file that defines your BigQuery schema.")
ValueProvider<String> getSchemaJSONPath();
void setSchemaJSONPath(ValueProvider<String> value);
@TemplateParameter.BigQueryTable(
order = 3,
groupName = "Target",
description = "BigQuery output table",
helpText =
"The name of the BigQuery table that stores your processed data. If you reuse an existing "
+ "BigQuery table, the data is appended to the destination table.")
ValueProvider<String> getOutputTable();
void setOutputTable(ValueProvider<String> value);
@TemplateParameter.GcsWriteFolder(
order = 4,
description = "Temporary directory for BigQuery loading process",
helpText = "The temporary directory to use during the BigQuery loading process.",
example = "gs://your-bucket/your-files/temp_dir")
@Validation.Required
ValueProvider<String> getBigQueryLoadingTemporaryDirectory();
void setBigQueryLoadingTemporaryDirectory(ValueProvider<String> directory);
@TemplateParameter.BigQueryTable(
order = 5,
description = "BigQuery output table for bad records",
helpText =
"The name of the BigQuery table to use to store the rejected data when processing the"
+ " CSV files. If you reuse an existing BigQuery table, the data is appended to the"
+ " destination table. The schema of this table must match the"
+ " error table schema (https://cloud.google.com/dataflow/docs/guides/templates/provided/cloud-storage-csv-to-bigquery#GcsCSVToBigQueryBadRecordsSchema).")
ValueProvider<String> getBadRecordsOutputTable();
void setBadRecordsOutputTable(ValueProvider<String> value);
}
private static final Logger LOG = LoggerFactory.getLogger(CSVToBigQuery.class);
private static final String BIGQUERY_SCHEMA = "BigQuery Schema";
private static final String NAME = "name";
private static final String TYPE = "type";
private static final String MODE = "mode";
private static final String RECORD_TYPE = "RECORD";
private static final String FIELDS_ENTRY = "fields";
/** The tag for the headers of the CSV if required. */
private static final TupleTag<String> CSV_HEADERS = new TupleTag<String>() {};
/** The tag for the lines of the CSV. */
private static final TupleTag<String> CSV_LINES = new TupleTag<String>() {};
/** The tag for the line of the CSV that matches destination table schema. */
private static final TupleTag<TableRow> GOOD_RECORDS = new TupleTag<TableRow>() {};
/** The tag for the lines of the CSV that does not match destination table schema. */
private static final TupleTag<TableRow> BAD_RECORDS = new TupleTag<TableRow>() {};
/** The schema of the BigQuery table for the bad records. */
private static final TableSchema errorTableSchema =
new TableSchema()
.setFields(
ImmutableList.of(
new TableFieldSchema().setName("RawContent").setType("STRING"),
new TableFieldSchema().setName("ErrorMsg").setType("STRING")));
private static class StringToTableRowFn extends DoFn<String, TableRow> {
private final ValueProvider<String> delimiter;
private final NestedValueProvider<List<String>, String> fields;
public StringToTableRowFn(
NestedValueProvider<List<String>, String> schemaFields, ValueProvider<String> delimiter) {
this.delimiter = delimiter;
this.fields = schemaFields;
}
@ProcessElement
public void processElement(ProcessContext context) throws IllegalArgumentException {
TableRow outputTableRow = new TableRow();
String[] rowValue =
Splitter.on(delimiter.get()).splitToList(context.element()).toArray(new String[0]);
if (rowValue.length != fields.get().size()) {
LOG.error("Number of fields in the schema and number of Csv headers do not match.");
outputTableRow.set("RawContent", String.join(delimiter.get(), rowValue));
outputTableRow.set(
"ErrorMsg", "Number of fields in the schema and number of Csv headers do not match.");
context.output(BAD_RECORDS, outputTableRow);
} else {
for (int i = 0; i < fields.get().size(); ++i) {
outputTableRow.set(fields.get().get(i), rowValue[i]);
}
context.output(GOOD_RECORDS, outputTableRow);
}
}
}
public static void main(String[] args) {
Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);
Pipeline pipeline = Pipeline.create(options);
PCollectionTuple tableRows =
pipeline
.apply(
"ReadCsvFile",
CsvConverters.ReadCsv.newBuilder()
.setInputFileSpec(options.getInputFilePattern())
.setHasHeaders(options.getContainsHeaders())
.setHeaderTag(CSV_HEADERS)
.setLineTag(CSV_LINES)
.setCsvFormat(options.getCsvFormat())
.setDelimiter(options.getDelimiter())
.setFileEncoding(options.getCsvFileEncoding())
.build())
.get(CSV_LINES)
.apply(
"ConvertToTableRow",
ParDo.of(
new StringToTableRowFn(
NestedValueProvider.of(
options.getSchemaJSONPath(),
jsonPath -> {
List<String> fields = new ArrayList<>();
SchemaParser schemaParser = new SchemaParser();
try {
JSONObject jsonSchema = schemaParser.parseSchema(jsonPath);
JSONArray bqSchemaJsonArray =
jsonSchema.getJSONArray(BIGQUERY_SCHEMA);
for (int i = 0; i < bqSchemaJsonArray.length(); i++) {
JSONObject inputField = bqSchemaJsonArray.getJSONObject(i);
fields.add(inputField.getString(NAME));
}
} catch (Exception e) {
throw new RuntimeException(
"Error parsing schema " + jsonPath, e);
}
return fields;
}),
options.getDelimiter()))
.withOutputTags(GOOD_RECORDS, TupleTagList.of(BAD_RECORDS)));
tableRows
.get(GOOD_RECORDS)
.apply(
"Insert good records into Bigquery",
BigQueryIO.writeTableRows()
.withSchema(
NestedValueProvider.of(
options.getSchemaJSONPath(),
schemaPath -> {
TableSchema tableSchema = new TableSchema();
List<TableFieldSchema> fields = new ArrayList<>();
SchemaParser schemaParser = new SchemaParser();
try {
JSONObject jsonSchema = schemaParser.parseSchema(schemaPath);
JSONArray bqSchemaJsonArray = jsonSchema.getJSONArray(BIGQUERY_SCHEMA);
for (int i = 0; i < bqSchemaJsonArray.length(); i++) {
JSONObject inputField = bqSchemaJsonArray.getJSONObject(i);
fields.add(convertToTableFieldSchema(inputField));
}
tableSchema.setFields(fields);
} catch (Exception e) {
throw new RuntimeException("Error parsing schema " + schemaPath, e);
}
return tableSchema;
}))
.to(options.getOutputTable())
.withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
.withWriteDisposition(WriteDisposition.WRITE_APPEND)
.withCustomGcsTempLocation(options.getBigQueryLoadingTemporaryDirectory()));
tableRows
.get(BAD_RECORDS)
.apply(
"Insert bad records into Bigquery",
BigQueryIO.writeTableRows()
.withSchema(errorTableSchema)
.to(options.getBadRecordsOutputTable())
.withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
.withWriteDisposition(WriteDisposition.WRITE_APPEND)
.withCustomGcsTempLocation(options.getBigQueryLoadingTemporaryDirectory()));
pipeline.run();
}
/**
* Convert a JSONObject from the Schema JSON to a TableFieldSchema. In case of RECORD, it handles
* the conversion recursively.
*
* @param inputField Input field to convert.
* @return TableFieldSchema instance to populate the schema.
*/
private static TableFieldSchema convertToTableFieldSchema(JSONObject inputField) {
TableFieldSchema field =
new TableFieldSchema()
.setName(inputField.getString(NAME))
.setType(inputField.getString(TYPE));
if (inputField.has(MODE)) {
field.setMode(inputField.getString(MODE));
}
if (inputField.getString(TYPE) != null && inputField.getString(TYPE).equals(RECORD_TYPE)) {
List<TableFieldSchema> nestedFields = new ArrayList<>();
JSONArray fieldsArr = inputField.getJSONArray(FIELDS_ENTRY);
for (int i = 0; i < fieldsArr.length(); i++) {
JSONObject nestedJSON = fieldsArr.getJSONObject(i);
nestedFields.add(convertToTableFieldSchema(nestedJSON));
}
field.setFields(nestedFields);
}
return field;
}
}
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-11-22 UTC."],[],[]]