クラスタリングは、類似したレコードをグループ化するために使用できる教師なし ML 手法です。これは、データにどのようなグループやクラスタがあるかを把握する必要があるものの、モデルをトレーニングするためのラベル付きデータがない場合に活用できるアプローチです。たとえば、地下鉄のチケット購入に関するラベルなしデータがある場合、そのデータをチケット購入時間別にクラスタリングすると、地下鉄の利用が最も多い時間帯を把握できます。詳細については、クラスタリングとはをご覧ください。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2024-12-23 UTC。"],[],[]]