Criar e executar um job que usa volumes de armazenamento

Neste documento, explicamos como criar e executar um job em lote que usa um ou mais volumes de armazenamento externo. As opções de armazenamento externo incluem um disco permanente novo ou atual, novos SSDs locais, buckets do Cloud Storage e um sistema de arquivos de rede (NFS, na sigla em inglês) atual, como um compartilhamento de arquivos do Filestore.

Independentemente de você adicionar volumes de armazenamento externo, cada VM do Compute Engine de um job tem um disco de inicialização, que fornece armazenamento para a imagem e as instruções do sistema operacional (SO) do job. Para mais informações sobre como configurar o disco de inicialização para um job, consulte a Visão geral do ambiente do SO da VM.

Antes de começar

Criar um job que use volumes de armazenamento

Opcionalmente, um job pode usar um ou mais de cada um dos seguintes tipos de volumes de armazenamento externo. Para mais informações sobre todos os tipos de volumes de armazenamento e as diferenças e restrições de cada um, consulte a documentação das Opções de armazenamento em VMs do Compute Engine.

É possível permitir que um job use cada volume de armazenamento incluindo-o na definição do job e especificando o caminho de ativação (mountPath) nos executáveis. Para saber como criar um job que use volumes de armazenamento, consulte uma ou mais das seguintes seções:

Usar um disco permanente

Um job que usa discos permanentes tem as seguintes restrições:

  • Todos os discos permanentes: analise as restrições para todos os discos permanentes.

  • Discos permanentes novos x atuais: cada disco permanente em um job pode ser novo (definido e criado com o job) ou atual (já criado no projeto e especificado no job). Para usar um disco permanente, ele precisa ser formatado e montado nas VMs do job, que precisam estar no mesmo local que o disco permanente. O Batch monta todos os discos permanentes incluídos em um job e formata todos os discos permanentes novos, mas é necessário formatar e desconectar quaisquer discos permanentes existentes que você queira que um job use.

    As opções de local, de formato e de ativação compatíveis variam entre os discos permanentes novos e atuais, conforme descrito na tabela a seguir:

    Novos discos permanentes Discos permanentes atuais
    Opções de formatação

    O disco permanente é formatado automaticamente com um sistema de arquivos ext4.

    formate o disco permanente para usar um sistema de arquivos ext4 antes de usá-lo em um job.

    Opções de montagem

    Todas as opções são aceitas.

    Todas as opções, exceto gravação, são aceitas. Isso se deve a restrições do modo de vários gravadores.

    É preciso desvincular o disco permanente de qualquer VM a que ele esteja anexado antes de usá-lo em um job.

    Opções de local

    Só é possível criar discos permanentes zonais.

    É possível selecionar qualquer local para o job. Os discos permanentes são criados na zona em que o projeto é executado.

    É possível selecionar discos permanentes regionais e zonais.


    Você precisa definir o local do job (ou, se especificado, apenas os locais permitidos) para somente locais que contêm todos os discos permanentes dele. Por exemplo, para um disco permanente zonal, o local do job precisa ser a zona do disco. Para um disco permanente regional, o local do job precisa ser a região do disco ou, se especificar as zonas, uma ou ambas as zonas específicas em que o disco permanente regional está localizado.

  • Modelos de instância: se você quiser usar um modelo de instância de VM ao criar esse job, anexe qualquer disco permanente para este job no modelo de instância. Caso contrário, se você não quiser usar um modelo de instância, precisará anexar qualquer disco permanente diretamente na definição do job.

É possível criar um job que use um disco permanente com o Console do Google Cloud, a CLI gcloud, a API Batch, Go, Java, Node.js, Python ou C++.

Console

Usando o console do Google Cloud, o exemplo a seguir cria um job que executa um script para ler um arquivo de um disco permanente zonal atual localizado na zona us-central1-a. O script de exemplo pressupõe que o job tenha um disco permanente zonal atual que contenha um arquivo de texto chamado example.txt no diretório raiz.

Opcional: criar um exemplo de disco permanente zonal

Se você quiser criar um disco permanente zonal que possa ser usado para executar o script de exemplo, faça o seguinte antes de criar o job:

  1. Anexe uma nova permanente em branco chamada example-disk a uma VM do Linux na zona us-central1-a e execute comandos na VM para formatar e ativar o disco. Para instruções, consulte Adicionar um disco permanente à VM.

    Não se desconecte da VM ainda.

  2. Para criar example.txt no disco permanente, execute os seguintes comandos na VM:

    1. Para alterar o diretório de trabalho atual para o diretório raiz do disco permanente, digite o seguinte comando:

      cd VM_MOUNT_PATH
      

      Substitua VM_MOUNT_PATH pelo caminho para o diretório em que o disco permanente foi ativado para essa VM na etapa anterior. Por exemplo, /mnt/disks/example-disk.

    2. Pressione Enter.

    3. Para criar e definir um arquivo chamado example.txt, digite o seguinte comando:

      cat > example.txt
      
    4. Pressione Enter.

    5. Digite o conteúdo do arquivo. Por exemplo, digite Hello world!.

    6. Para salvar o arquivo, pressione Ctrl+D (ou Command+D no macOS).

    Quando terminar, você poderá se desconectar da VM.

  3. Remover o disco permanente da VM.

Criar um job que use o disco permanente zonal atual

Para criar um job que use discos permanentes zonais atuais usando o console do Google Cloud, faça o seguinte:

  1. No console do Google Cloud, acesse a página Lista de jobs.

    Acessar a lista de jobs

  2. Clique em Criar. A página Criar job em lote é aberta. No painel esquerdo, a página Detalhes do job está selecionada.

  3. Configure a página Detalhes do job:

    1. Opcional: no campo Nome do job, personalize o nome dele.

      Por exemplo, insira example-disk-job.

    2. Configure a seção Detalhes da tarefa:

      1. Na janela Novo executável, adicione pelo menos um script ou contêiner para que esse job seja executado.

        Por exemplo, para executar um script que imprime o conteúdo de um arquivo chamado example.txt e localizado no diretório raiz do disco permanente que esse job usa, faça o seguinte:

        1. Marque a caixa de seleção Script. Uma caixa de texto será exibida.

        2. Na caixa de texto, insira este script:

          echo "Here is the content of the example.txt file in the persistent disk."
          cat MOUNT_PATH/example.txt
          

          Substitua MOUNT_PATH pelo caminho em que você planeja ativar o disco permanente para as VMs desse job, por exemplo, /mnt/disks/example-disk.

        3. Clique em Concluído.

      2. No campo Contagem de tarefas, insira o número de tarefas deste job.

        Por exemplo, digite 1 (padrão).

      3. No campo Paralelismo, insira o número de tarefas a serem executadas simultaneamente.

        Por exemplo, digite 1 (padrão).

  4. Configure a página Especificações de recursos:

    1. No painel esquerdo, clique em Especificações de recursos. A página Especificações de recursos é aberta.

    2. Selecione o local da vaga. Para usar um disco permanente zonal atual, as VMs de um job precisam estar localizadas na mesma zona.

      1. No campo Região, selecione uma região.

        Por exemplo, para usar o exemplo de disco permanente zonal, selecione us-central1 (Iowa) (padrão).

      2. No campo Zona, selecione uma zona.

        Por exemplo, selecione us-central1-a (Iowa).

  5. Defina a página Outras configurações:

    1. No painel à esquerda, clique em Configurações adicionais. A página Configurações adicionais é aberta.

    2. Para cada disco permanente zonal atual que você quer ativar nesse job, faça o seguinte:

      1. Na seção Volume de armazenamento, clique em Adicionar novo volume. A janela Novo volume vai aparecer.

      2. Na janela Novo volume, faça o seguinte:

        1. Na seção Tipo de volume, selecione Disco permanente (padrão).

        2. Na lista Disco, selecione um disco permanente zonal atual que você queira ativar nesse job. O disco precisa estar localizado na mesma zona desse job.

          Por exemplo, selecione o disco permanente zonal atual que você preparou. Ele está localizado na zona us-central1-a e contém o arquivo example.txt.

        3. Opcional: se você quiser renomear esse disco permanente zonal, faça o seguinte:

          1. Selecione Personalizar o nome do dispositivo.

          2. No campo Nome do dispositivo, digite o novo nome do disco.

        4. No campo Caminho de montagem, insira o caminho de ativação (MOUNT_PATH) do disco permanente:

          Por exemplo, digite o seguinte:

          /mnt/disks/EXISTING_PERSISTENT_DISK_NAME
          

          Substitua EXISTING_PERSISTENT_DISK_NAME pelo nome do disco. Se você renomeou o disco permanente zonal, use o novo nome.

          Por exemplo, substitua EXISTING_PERSISTENT_DISK_NAME por example-disk.

        5. Clique em Concluído.

  6. Opcional: configure os outros campos deste job.

  7. Opcional: para revisar a configuração do job, clique em Visualizar no painel esquerdo.

  8. Clique em Criar.

A página Lista de jobs exibe o job que você criou.

gcloud

Usando a CLI gcloud, o exemplo a seguir cria um job que anexa e ativa um disco permanente existente e um novo disco permanente. O job tem três tarefas, cada uma executando um script para criar um arquivo no novo disco permanente chamado output_task_TASK_INDEX.txt, em que TASK_INDEX é o índice de cada tarefa: 0, 1 e 2.

Para criar um job que usa discos permanentes com a CLI gcloud, use o comando gcloud batch jobs submit. No arquivo de configuração JSON do job, especifique os discos permanentes no campo instances e ative o disco permanente no campo volumes.

  1. Crie um arquivo JSON.

    • Se você não estiver usando um modelo de instância para este job, crie um arquivo JSON com o seguinte conteúdo:

      {
          "allocationPolicy": {
              "instances": [
                  {
                      "policy": {
                          "disks": [
                              {
                                  "deviceName": "EXISTING_PERSISTENT_DISK_NAME",
                                  "existingDisk": "projects/PROJECT_ID/EXISTING_PERSISTENT_DISK_LOCATION/disks/EXISTING_PERSISTENT_DISK_NAME"
                              },
                              {
                                  "newDisk": {
                                      "sizeGb": NEW_PERSISTENT_DISK_SIZE,
                                      "type": "NEW_PERSISTENT_DISK_TYPE"
                                  },
                                  "deviceName": "NEW_PERSISTENT_DISK_NAME"
                              }
                          ]
                      }
                  }
              ],
              "location": {
                  "allowedLocations": [
                      "EXISTING_PERSISTENT_DISK_LOCATION"
                  ]
              }
          },
          "taskGroups": [
              {
                  "taskSpec": {
                      "runnables": [
                          {
                              "script": {
                                  "text": "echo Hello world from task ${BATCH_TASK_INDEX}. >> /mnt/disks/NEW_PERSISTENT_DISK_NAME/output_task_${BATCH_TASK_INDEX}.txt"
                              }
                          }
                      ],
                      "volumes": [
                          {
                              "deviceName": "NEW_PERSISTENT_DISK_NAME",
                              "mountPath": "/mnt/disks/NEW_PERSISTENT_DISK_NAME",
                              "mountOptions": "rw,async"
                          },
                          {
      
                              "deviceName": "EXISTING_PERSISTENT_DISK_NAME",
                              "mountPath": "/mnt/disks/EXISTING_PERSISTENT_DISK_NAME"
                          }
                      ]
                  },
                  "taskCount":3
              }
          ],
          "logsPolicy": {
              "destination": "CLOUD_LOGGING"
          }
      }
      

      Substitua:

      • PROJECT_ID: o ID do projeto.
      • EXISTING_PERSISTENT_DISK_NAME: o nome de um disco permanente atual.
      • EXISTING_PERSISTENT_DISK_LOCATION: o local de um disco permanente atual. Para cada disco permanente zonal atual, o local do job precisa ser a zona do disco. Para cada disco permanente regional atual, o local do job precisa ser a região do disco ou, se especificar as zonas, uma ou ambas as zonas específicas em que o disco permanente regional está localizado. Se você não estiver especificando nenhum disco permanente, poderá selecionar qualquer local. Saiba mais sobre o campo allowedLocations.
      • NEW_PERSISTENT_DISK_SIZE: o tamanho do novo disco permanente em GB. Os tamanhos permitidos dependem do tipo de disco permanente, mas o mínimo geralmente é 10 GB (10) e o máximo geralmente é 64 TB (64000).
      • NEW_PERSISTENT_DISK_TYPE: o tipo de disco do novo disco permanente, que pode ser pd-standard, pd-balanced, pd-ssd ou pd-extreme. Para jobs em lote, o padrão é pd-balanced.
      • NEW_PERSISTENT_DISK_NAME: o nome do novo disco permanente.
    • Se você estiver usando um modelo de instância de VM para este job, crie um arquivo JSON conforme mostrado anteriormente, mas substitua o campo instances pelo seguinte:

      "instances": [
          {
              "instanceTemplate": "INSTANCE_TEMPLATE_NAME"
          }
      ],
      

      em que INSTANCE_TEMPLATE_NAME é o nome do modelo de instância para esse job. Para um job que usa discos permanentes, esse modelo de instância precisa definir e anexar os discos permanentes que você quer que o job use. Neste exemplo, o modelo precisa definir e anexar um novo disco permanente chamado NEW_PERSISTENT_DISK_NAME e anexar um disco permanente existente chamado EXISTING_PERSISTENT_DISK_NAME.

  2. Execute este comando:

    gcloud batch jobs submit JOB_NAME \
      --location LOCATION \
      --config JSON_CONFIGURATION_FILE
    

    Substitua:

    • JOB_NAME: o nome do job.

    • LOCATION: o local do job.

    • JSON_CONFIGURATION_FILE: o caminho para um arquivo JSON com os detalhes de configuração do job.

API

Usando a API Batch, o exemplo a seguir cria um job que anexa e ativa um disco permanente existente e um novo disco permanente. O job tem três tarefas, e cada uma executa um script para criar um arquivo no novo disco permanente chamado output_task_TASK_INDEX.txt, em que TASK_INDEX é o índice de cada tarefa: 0, 1 e 2.

Para criar um job que use discos permanentes com a API Batch, use o método jobs.create. Na solicitação, especifique os discos permanentes no campo instances e ative o disco permanente no campo volumes.

  • Se você não estiver usando um modelo de instância para este job, faça a seguinte solicitação:

    POST https://batch.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/jobs?job_id=JOB_NAME
    
    {
        "allocationPolicy": {
            "instances": [
                {
                    "policy": {
                        "disks": [
                            {
                                "deviceName": "EXISTING_PERSISTENT_DISK_NAME",
                                "existingDisk": "projects/PROJECT_ID/EXISTING_PERSISTENT_DISK_LOCATION/disks/EXISTING_PERSISTENT_DISK_NAME"
                            },
                            {
                                "newDisk": {
                                    "sizeGb": NEW_PERSISTENT_DISK_SIZE,
                                    "type": "NEW_PERSISTENT_DISK_TYPE"
                                },
                                "deviceName": "NEW_PERSISTENT_DISK_NAME"
                            }
                        ]
                    }
                }
            ],
            "location": {
                "allowedLocations": [
                    "EXISTING_PERSISTENT_DISK_LOCATION"
                ]
            }
        },
        "taskGroups": [
            {
                "taskSpec": {
                    "runnables": [
                        {
                            "script": {
                                "text": "echo Hello world from task ${BATCH_TASK_INDEX}. >> /mnt/disks/NEW_PERSISTENT_DISK_NAME/output_task_${BATCH_TASK_INDEX}.txt"
                            }
                        }
                    ],
                    "volumes": [
                        {
                            "deviceName": "NEW_PERSISTENT_DISK_NAME",
                            "mountPath": "/mnt/disks/NEW_PERSISTENT_DISK_NAME",
                            "mountOptions": "rw,async"
                        },
                        {
    
                            "deviceName": "EXISTING_PERSISTENT_DISK_NAME",
                            "mountPath": "/mnt/disks/EXISTING_PERSISTENT_DISK_NAME"
                        }
                    ]
                },
                "taskCount":3
            }
        ],
        "logsPolicy": {
            "destination": "CLOUD_LOGGING"
        }
    }
    

    Substitua:

    • PROJECT_ID: o ID do projeto.
    • LOCATION: o local do job.
    • JOB_NAME: o nome do job.
    • EXISTING_PERSISTENT_DISK_NAME: o nome de um disco permanente atual.
    • EXISTING_PERSISTENT_DISK_LOCATION: o local de um disco permanente atual. Para cada disco permanente zonal atual, o local do job precisa ser a zona do disco. Para cada disco permanente regional atual, o local do job precisa ser a região do disco ou, se especificar as zonas, uma ou ambas as zonas específicas em que o disco permanente regional está localizado. Se você não estiver especificando nenhum disco permanente atual, poderá selecionar qualquer local. Saiba mais sobre o campo allowedLocations.
    • NEW_PERSISTENT_DISK_SIZE: o tamanho do novo disco permanente em GB. Os tamanhos permitidos dependem do tipo de disco permanente, mas o mínimo geralmente é 10 GB (10) e o máximo geralmente é 64 TB (64000).
    • NEW_PERSISTENT_DISK_TYPE: o tipo de disco do novo disco permanente, que pode ser pd-standard, pd-balanced, pd-ssd ou pd-extreme. Para jobs em lote, o padrão é pd-balanced.
    • NEW_PERSISTENT_DISK_NAME: o nome do novo disco permanente.
  • Se você estiver usando um modelo de instância de VM para este job, crie um arquivo JSON conforme mostrado anteriormente, mas substitua o campo instances pelo seguinte:

    "instances": [
        {
            "instanceTemplate": "INSTANCE_TEMPLATE_NAME"
        }
    ],
    ...
    

    Em que INSTANCE_TEMPLATE_NAME é o nome do modelo de instância para esse job. Para um job que usa discos permanentes, esse modelo de instância precisa definir e anexar os discos permanentes que você quer que o job use. Neste exemplo, o modelo precisa definir e anexar um novo disco permanente chamado NEW_PERSISTENT_DISK_NAME e anexar um disco permanente existente chamado EXISTING_PERSISTENT_DISK_NAME.

Go

Para criar um job em lote que use discos permanentes novos ou atuais com as bibliotecas de cliente do Cloud para Go, use a função CreateJob e inclua o seguinte:

Para um exemplo de código de um caso de uso semelhante, consulte Usar um bucket do Cloud Storage.

Java

Para criar um job em lote que use discos permanentes novos ou existentes com as bibliotecas de cliente do Cloud para Java, use a classe CreateJobRequest e inclua o seguinte:

Para um exemplo de código de um caso de uso semelhante, consulte Usar um bucket do Cloud Storage.

Node.js

Para criar um job em lote que use discos permanentes novos ou atuais com as bibliotecas de cliente do Cloud para Node.js, use o método createJob e inclua o seguinte:

Para um exemplo de código de um caso de uso semelhante, consulte Usar um bucket do Cloud Storage.

Python

Para criar um job em lote que use discos permanentes novos ou atuais com as bibliotecas de cliente do Cloud para Python, use a função CreateJob e inclua o seguinte:

  • Para anexar discos permanentes às VMs de um job, inclua uma das seguintes opções:
  • Para ativar os discos permanentes no job, use a classe Volume com os atributos device_name e mount_path. Para novos discos permanentes, use também o atributo mount_options para ativar a gravação.

Para um exemplo de código de um caso de uso semelhante, consulte Usar um bucket do Cloud Storage.

C++

Para criar um job em lote que use discos permanentes novos ou atuais com as bibliotecas de cliente do Cloud para C++, use a função CreateJob e inclua o seguinte:

  • Para anexar discos permanentes às VMs de um job, inclua uma das seguintes opções:
    • Se você não estiver usando um modelo de instância de VM para este job, utilize o método set_remote_path.
    • Se você estiver usando um modelo de instância de VM para este job, utilize o método set_instance_template.
  • Para ativar os discos permanentes no job, use o campo volumes com os campos deviceName e mountPath. Para novos discos permanentes, use também o campo mountOptions para ativar a gravação.

Para um exemplo de código de um caso de uso semelhante, consulte Usar um bucket do Cloud Storage.

Usar um SSD local

Um job que usa SSDs locais tem as seguintes restrições:

É possível criar um job que use um SSD local com a CLI gcloud ou a API Batch. No exemplo a seguir, descrevemos como criar um job que cria, anexa e ativa um SSD local. O job também tem três tarefas, em que cada uma executa um script para criar um arquivo no SSD local chamado output_task_TASK_INDEX.txt, em que TASK_INDEX é o índice de cada tarefa: 0, 1 e 2.

gcloud

Para criar um job que use SSDs locais usando a CLI gcloud, use o comando gcloud batch jobs submit. No arquivo de configuração JSON do job, crie e anexe os SSDs locais no campo instances e ative-os no campo volumes.

  1. Crie um arquivo JSON.

    • Se você não estiver usando um modelo de instância para este job, crie um arquivo JSON com o seguinte conteúdo:

      {
          "allocationPolicy": {
              "instances": [
                  {
                      "policy": {
                          "machineType": MACHINE_TYPE,
                          "disks": [
                              {
                                  "newDisk": {
                                      "sizeGb": LOCAL_SSD_SIZE,
                                      "type": "local-ssd"
                                  },
                                  "deviceName": "LOCAL_SSD_NAME"
                              }
                          ]
                      }
                  }
              ]
          },
          "taskGroups": [
              {
                  "taskSpec": {
                      "runnables": [
                          {
                              "script": {
                                  "text": "echo Hello world from task ${BATCH_TASK_INDEX}. >> /mnt/disks/LOCAL_SSD_NAME/output_task_${BATCH_TASK_INDEX}.txt"
                              }
                          }
                      ],
                      "volumes": [
                          {
                              "deviceName": "LOCAL_SSD_NAME",
                              "mountPath": "/mnt/disks/LOCAL_SSD_NAME",
                              "mountOptions": "rw,async"
                          }
                      ]
                  },
                  "taskCount":3
              }
          ],
          "logsPolicy": {
              "destination": "CLOUD_LOGGING"
          }
      }
      

      Substitua:

      • MACHINE_TYPE: o tipo de máquina, que pode ser predefinido ou personalizado, das VMs do job. O número permitido de SSDs locais depende do tipo de máquina das VMs do job.
      • LOCAL_SSD_NAME: o nome de um SSD local criado para o job.
      • LOCAL_SSD_SIZE: o tamanho de todos os SSDs locais em GB. Cada SSD local tem 375 GB. Portanto, esse valor precisa ser um múltiplo de 375 GB. Por exemplo, para dois SSDs locais, defina esse valor como 750 GB.
    • Se você estiver usando um modelo de instância de VM para este job, crie um arquivo JSON conforme mostrado anteriormente, mas substitua o campo instances pelo seguinte:

      "instances": [
          {
              "instanceTemplate": "INSTANCE_TEMPLATE_NAME"
          }
      ],
      

      em que INSTANCE_TEMPLATE_NAME é o nome do modelo de instância para esse job. Para um job que usa SSDs locais, esse modelo de instância precisa definir e anexar os SSDs locais que você quer que o job use. Neste exemplo, o modelo precisa definir e anexar um SSD local chamado LOCAL_SSD_NAME.

  2. Execute este comando:

    gcloud batch jobs submit JOB_NAME \
      --location LOCATION \
      --config JSON_CONFIGURATION_FILE
    

    Substitua:

    • JOB_NAME: o nome do job.
    • LOCATION: o local do job.
    • JSON_CONFIGURATION_FILE: o caminho para um arquivo JSON com os detalhes de configuração do job.

API

Para criar um job que use SSDs locais com a API Batch, utilize o método jobs.create. Na solicitação, crie e anexe os SSDs locais no campo instances e ative-os no campo volumes.

  • Se você não estiver usando um modelo de instância para este job, faça a seguinte solicitação:

    POST https://batch.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/jobs?job_id=JOB_NAME
    
    {
        "allocationPolicy": {
            "instances": [
                {
                    "policy": {
                        "machineType": MACHINE_TYPE,
                        "disks": [
                            {
                                "newDisk": {
                                    "sizeGb": LOCAL_SSD_SIZE,
                                    "type": "local-ssd"
                                },
                                "deviceName": "LOCAL_SSD_NAME"
                            }
                        ]
                    }
                }
            ]
        },
        "taskGroups": [
            {
                "taskSpec": {
                    "runnables": [
                        {
                            "script": {
                                "text": "echo Hello world from task ${BATCH_TASK_INDEX}. >> /mnt/disks/LOCAL_SSD_NAME/output_task_${BATCH_TASK_INDEX}.txt"
                            }
                        }
                    ],
                    "volumes": [
                        {
                            "deviceName": "LOCAL_SSD_NAME",
                            "mountPath": "/mnt/disks/LOCAL_SSD_NAME",
                            "mountOptions": "rw,async"
                        }
                    ]
                },
                "taskCount":3
            }
        ],
        "logsPolicy": {
            "destination": "CLOUD_LOGGING"
        }
    }
    

    Substitua:

    • PROJECT_ID: o ID do projeto.
    • LOCATION: o local do job.
    • JOB_NAME: o nome do job.
    • MACHINE_TYPE: o tipo de máquina, que pode ser predefinido ou personalizado, das VMs do job. O número permitido de SSDs locais depende do tipo de máquina das VMs do job.
    • LOCAL_SSD_NAME: o nome de um SSD local criado para o job.
    • LOCAL_SSD_SIZE: o tamanho de todos os SSDs locais em GB. Cada SSD local tem 375 GB. Portanto, esse valor precisa ser um múltiplo de 375 GB. Por exemplo, para dois SSDs locais, defina esse valor como 750 GB.
  • Se você estiver usando um modelo de instância de VM para este job, crie um arquivo JSON conforme mostrado anteriormente, mas substitua o campo instances pelo seguinte:

    "instances": [
        {
            "instanceTemplate": "INSTANCE_TEMPLATE_NAME"
        }
    ],
    ...
    

    Em que INSTANCE_TEMPLATE_NAME é o nome do modelo de instância para esse job. Para um job que usa SSDs locais, esse modelo de instância precisa definir e anexar os SSDs locais que você quer que o job use. Neste exemplo, o modelo precisa definir e anexar um SSD local chamado LOCAL_SSD_NAME.

Usar um bucket do Cloud Storage

Para criar um job que use um bucket do Cloud Storage, selecione um dos seguintes métodos:

  • Recomendado: ative um bucket diretamente nas VMs do job especificando o bucket na definição do job, conforme mostrado nesta seção. Quando o job é executado, o bucket é montado automaticamente nas VMs do job usando o Cloud Storage FUSE.
  • Crie um job com tarefas que acessam diretamente um bucket do Cloud Storage usando a ferramenta de linha de comando gsutil ou as bibliotecas de cliente da API Cloud Storage. Para saber como acessar um bucket do Cloud Storage diretamente de uma VM, consulte a documentação do Compute Engine sobre Como gravar e ler dados de buckets do Cloud Storage.

Antes de criar um job que use um bucket, crie um bucket ou identifique um atual. Para mais informações, consulte Criar buckets e Listar buckets.

É possível criar um job que use um bucket do Cloud Storage usando o Console do Google Cloud, a CLI gcloud, a API Batch, Go, Java, Node.js, Python ou C++.

O exemplo a seguir descreve como criar um job que ativa um bucket do Cloud Storage. O job também tem três tarefas, em que cada uma executa um script para criar um arquivo no bucket chamado output_task_TASK_INDEX.txt, em que TASK_INDEX é o índice de cada tarefa: 0, 1 e 2.

Console

Para criar um job que use um bucket do Cloud Storage com o console do Google Cloud, faça o seguinte:

  1. No console do Google Cloud, acesse a página Lista de jobs.

    Acessar a lista de jobs

  2. Clique em Criar. A página Criar job em lote é aberta. No painel esquerdo, a página Detalhes do job está selecionada.

  3. Configure a página Detalhes do job:

    1. Opcional: no campo Nome do job, personalize o nome dele.

      Por exemplo, insira example-bucket-job.

    2. Configure a seção Detalhes da tarefa:

      1. Na janela Novo executável, adicione pelo menos um script ou contêiner para que esse job seja executado.

        Por exemplo, faça o seguinte:

        1. Marque a caixa de seleção Script. Uma caixa de texto será exibida.

        2. Na caixa de texto, insira este script:

          echo Hello world from task ${BATCH_TASK_INDEX}. >> MOUNT_PATH/output_task_${BATCH_TASK_INDEX}.txt
          

          Substitua MOUNT_PATH pelo caminho de ativação que os executáveis deste job usam para acessar um bucket do Cloud Storage atual. O caminho precisa começar com /mnt/disks/ seguido por um diretório ou caminho escolhido. Por exemplo, se você quiser representar esse bucket com um diretório chamado my-bucket, defina o caminho de ativação como /mnt/disks/my-bucket.

        3. Clique em Concluído.

      2. No campo Contagem de tarefas, insira o número de tarefas deste job.

        Por exemplo, insira 3.

      3. No campo Paralelismo, insira o número de tarefas a serem executadas simultaneamente.

        Por exemplo, digite 1 (padrão).

  4. Defina a página Outras configurações:

    1. No painel à esquerda, clique em Configurações adicionais. A página Configurações adicionais é aberta.

    2. Para cada bucket do Cloud Storage que você quer ativar neste job, faça o seguinte:

      1. Na seção Volume de armazenamento, clique em Adicionar novo volume. A janela Novo volume vai aparecer.

      2. Na janela Novo volume, faça o seguinte:

        1. Na seção Tipo de volume, selecione Bucket do Cloud Storage.

        2. No campo Nome do bucket do Storage, insira o nome de um bucket atual.

          Por exemplo, insira o bucket especificado no executável deste job.

        3. No campo Caminho de montagem, insira o caminho de ativação do bucket (MOUNT_PATH), que você especifica no executável.

        4. Clique em Concluído.

  5. Opcional: configure os outros campos deste job.

  6. Opcional: para revisar a configuração do job, clique em Visualizar no painel esquerdo.

  7. Clique em Criar.

A página Lista de jobs exibe o job que você criou.

gcloud

Para criar um job que use um bucket do Cloud Storage com a CLI gcloud, use o comando gcloud batch jobs submit. No arquivo de configuração JSON do job, ative o bucket no campo volumes.

Por exemplo, para criar um job que gera arquivos para um Cloud Storage:

  1. Crie um arquivo JSON com o seguinte conteúdo:

    {
        "taskGroups": [
            {
                "taskSpec": {
                    "runnables": [
                        {
                            "script": {
                                "text": "echo Hello world from task ${BATCH_TASK_INDEX}. >> MOUNT_PATH/output_task_${BATCH_TASK_INDEX}.txt"
                            }
                        }
                    ],
                    "volumes": [
                        {
                            "gcs": {
                                "remotePath": "BUCKET_PATH"
                            },
                            "mountPath": "MOUNT_PATH"
                        }
                    ]
                },
                "taskCount": 3
            }
        ],
        "logsPolicy": {
            "destination": "CLOUD_LOGGING"
        }
    }
    

    Substitua:

    • BUCKET_PATH: o caminho do diretório do bucket que você quer que esse job acesse, que precisa começar com o nome do bucket. Por exemplo, para um bucket chamado BUCKET_NAME, o caminho BUCKET_NAME representa o diretório raiz do bucket, e o caminho BUCKET_NAME/subdirectory representa o subdiretório subdirectory.
    • MOUNT_PATH: o caminho de ativação que os executáveis do job usam para acessar esse bucket. O caminho precisa começar com /mnt/disks/ seguido por um diretório ou caminho escolhido. Por exemplo, se você quiser representar esse bucket com um diretório chamado my-bucket, defina o caminho de ativação como /mnt/disks/my-bucket.
  2. Execute este comando:

    gcloud batch jobs submit JOB_NAME \
      --location LOCATION \
      --config JSON_CONFIGURATION_FILE
    

    Substitua:

    • JOB_NAME: o nome do job.
    • LOCATION: o local do job.
    • JSON_CONFIGURATION_FILE: o caminho para um arquivo JSON com os detalhes de configuração do job.

API

Para criar um job que use um bucket do Cloud Storage com a API Batch, use o método jobs.create e ative o bucket no campo volumes.

POST https://batch.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/jobs?job_id=JOB_NAME

{
    "taskGroups": [
        {
            "taskSpec": {
                "runnables": [
                    {
                        "script": {
                            "text": "echo Hello world from task ${BATCH_TASK_INDEX}. >> MOUNT_PATH/output_task_${BATCH_TASK_INDEX}.txt"
                        }
                    }
                ],
                "volumes": [
                    {
                        "gcs": {
                            "remotePath": "BUCKET_PATH"
                        },
                        "mountPath": "MOUNT_PATH"
                    }
                ]
            },
            "taskCount": 3
        }
    ],
    "logsPolicy": {
            "destination": "CLOUD_LOGGING"
    }
}

Substitua:

  • PROJECT_ID: o ID do projeto.
  • LOCATION: o local do job.
  • JOB_NAME: o nome do job.
  • BUCKET_PATH: o caminho do diretório do bucket que você quer que esse job acesse. Ele precisa começar com o nome do bucket. Por exemplo, para um bucket chamado BUCKET_NAME, o caminho BUCKET_NAME representa o diretório raiz do bucket e o caminho BUCKET_NAME/subdirectory representa o subdiretório subdirectory.
  • MOUNT_PATH: o caminho de ativação que os executáveis do job usam para acessar esse bucket. O caminho precisa começar com /mnt/disks/ seguido por um diretório ou caminho escolhido. Por exemplo, se você quiser representar esse bucket com um diretório chamado my-bucket, defina o caminho de ativação como /mnt/disks/my-bucket.

Go

Go

Para mais informações, consulte a documentação de referência da API Go em lote.

Para autenticar no Batch, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import (
	"context"
	"fmt"
	"io"

	batch "cloud.google.com/go/batch/apiv1"
	batchpb "google.golang.org/genproto/googleapis/cloud/batch/v1"
	durationpb "google.golang.org/protobuf/types/known/durationpb"
)

// Creates and runs a job that executes the specified script
func createScriptJobWithBucket(w io.Writer, projectID, region, jobName, bucketName string) error {
	// projectID := "your_project_id"
	// region := "us-central1"
	// jobName := "some-job"
	// jobName := "some-bucket"

	ctx := context.Background()
	batchClient, err := batch.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %w", err)
	}
	defer batchClient.Close()

	// Define what will be done as part of the job.
	command := &batchpb.Runnable_Script_Text{
		Text: "echo Hello world from task ${BATCH_TASK_INDEX}. >> /mnt/share/output_task_${BATCH_TASK_INDEX}.txt",
	}

	// Specify the Google Cloud Storage bucket to mount
	volume := &batchpb.Volume{
		Source: &batchpb.Volume_Gcs{
			Gcs: &batchpb.GCS{
				RemotePath: bucketName,
			},
		},
		MountPath:    "/mnt/share",
		MountOptions: []string{},
	}

	// We can specify what resources are requested by each task.
	resources := &batchpb.ComputeResource{
		// CpuMilli is milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
		CpuMilli:  500,
		MemoryMib: 16,
	}

	taskSpec := &batchpb.TaskSpec{
		Runnables: []*batchpb.Runnable{{
			Executable: &batchpb.Runnable_Script_{
				Script: &batchpb.Runnable_Script{Command: command},
			},
		}},
		ComputeResource: resources,
		MaxRunDuration: &durationpb.Duration{
			Seconds: 3600,
		},
		MaxRetryCount: 2,
		Volumes:       []*batchpb.Volume{volume},
	}

	// Tasks are grouped inside a job using TaskGroups.
	taskGroups := []*batchpb.TaskGroup{
		{
			TaskCount: 4,
			TaskSpec:  taskSpec,
		},
	}

	// Policies are used to define on what kind of virtual machines the tasks will run on.
	// In this case, we tell the system to use "e2-standard-4" machine type.
	// Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
	allocationPolicy := &batchpb.AllocationPolicy{
		Instances: []*batchpb.AllocationPolicy_InstancePolicyOrTemplate{{
			PolicyTemplate: &batchpb.AllocationPolicy_InstancePolicyOrTemplate_Policy{
				Policy: &batchpb.AllocationPolicy_InstancePolicy{
					MachineType: "e2-standard-4",
				},
			},
		}},
	}

	// We use Cloud Logging as it's an out of the box available option
	logsPolicy := &batchpb.LogsPolicy{
		Destination: batchpb.LogsPolicy_CLOUD_LOGGING,
	}

	jobLabels := map[string]string{"env": "testing", "type": "script"}

	// The job's parent is the region in which the job will run
	parent := fmt.Sprintf("projects/%s/locations/%s", projectID, region)

	job := batchpb.Job{
		TaskGroups:       taskGroups,
		AllocationPolicy: allocationPolicy,
		Labels:           jobLabels,
		LogsPolicy:       logsPolicy,
	}

	req := &batchpb.CreateJobRequest{
		Parent: parent,
		JobId:  jobName,
		Job:    &job,
	}

	created_job, err := batchClient.CreateJob(ctx, req)
	if err != nil {
		return fmt.Errorf("unable to create job: %w", err)
	}

	fmt.Fprintf(w, "Job created: %v\n", created_job)

	return nil
}

Java

Java

Para mais informações, consulte a documentação de referência da API Java em lote.

Para autenticar no Batch, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import com.google.cloud.batch.v1.AllocationPolicy;
import com.google.cloud.batch.v1.AllocationPolicy.InstancePolicy;
import com.google.cloud.batch.v1.AllocationPolicy.InstancePolicyOrTemplate;
import com.google.cloud.batch.v1.BatchServiceClient;
import com.google.cloud.batch.v1.ComputeResource;
import com.google.cloud.batch.v1.CreateJobRequest;
import com.google.cloud.batch.v1.GCS;
import com.google.cloud.batch.v1.Job;
import com.google.cloud.batch.v1.LogsPolicy;
import com.google.cloud.batch.v1.LogsPolicy.Destination;
import com.google.cloud.batch.v1.Runnable;
import com.google.cloud.batch.v1.Runnable.Script;
import com.google.cloud.batch.v1.TaskGroup;
import com.google.cloud.batch.v1.TaskSpec;
import com.google.cloud.batch.v1.Volume;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateWithMountedBucket {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    // Project ID or project number of the Cloud project you want to use.
    String projectId = "YOUR_PROJECT_ID";

    // Name of the region you want to use to run the job. Regions that are
    // available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
    String region = "europe-central2";

    // The name of the job that will be created.
    // It needs to be unique for each project and region pair.
    String jobName = "JOB_NAME";

    // Name of the bucket to be mounted for your Job.
    String bucketName = "BUCKET_NAME";

    createScriptJobWithBucket(projectId, region, jobName, bucketName);
  }

  // This method shows how to create a sample Batch Job that will run
  // a simple command on Cloud Compute instances.
  public static void createScriptJobWithBucket(String projectId, String region, String jobName,
      String bucketName)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the `batchServiceClient.close()` method on the client to safely
    // clean up any remaining background resources.
    try (BatchServiceClient batchServiceClient = BatchServiceClient.create()) {

      // Define what will be done as part of the job.
      Runnable runnable =
          Runnable.newBuilder()
              .setScript(
                  Script.newBuilder()
                      .setText(
                          "echo Hello world from task ${BATCH_TASK_INDEX}. >> "
                              + "/mnt/share/output_task_${BATCH_TASK_INDEX}.txt")
                      // You can also run a script from a file. Just remember, that needs to be a
                      // script that's already on the VM that will be running the job.
                      // Using setText() and setPath() is mutually exclusive.
                      // .setPath("/tmp/test.sh")
                      .build())
              .build();

      Volume volume = Volume.newBuilder()
          .setGcs(GCS.newBuilder()
              .setRemotePath(bucketName)
              .build())
          .setMountPath("/mnt/share")
          .build();

      // We can specify what resources are requested by each task.
      ComputeResource computeResource =
          ComputeResource.newBuilder()
              // In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
              .setCpuMilli(500)
              // In MiB.
              .setMemoryMib(16)
              .build();

      TaskSpec task =
          TaskSpec.newBuilder()
              // Jobs can be divided into tasks. In this case, we have only one task.
              .addRunnables(runnable)
              .addVolumes(volume)
              .setComputeResource(computeResource)
              .setMaxRetryCount(2)
              .setMaxRunDuration(Duration.newBuilder().setSeconds(3600).build())
              .build();

      // Tasks are grouped inside a job using TaskGroups.
      // Currently, it's possible to have only one task group.
      TaskGroup taskGroup = TaskGroup.newBuilder().setTaskCount(4).setTaskSpec(task).build();

      // Policies are used to define on what kind of virtual machines the tasks will run on.
      // In this case, we tell the system to use "e2-standard-4" machine type.
      // Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
      InstancePolicy instancePolicy =
          InstancePolicy.newBuilder().setMachineType("e2-standard-4").build();

      AllocationPolicy allocationPolicy =
          AllocationPolicy.newBuilder()
              .addInstances(InstancePolicyOrTemplate.newBuilder().setPolicy(instancePolicy).build())
              .build();

      Job job =
          Job.newBuilder()
              .addTaskGroups(taskGroup)
              .setAllocationPolicy(allocationPolicy)
              .putLabels("env", "testing")
              .putLabels("type", "script")
              .putLabels("mount", "bucket")
              // We use Cloud Logging as it's an out of the box available option.
              .setLogsPolicy(
                  LogsPolicy.newBuilder().setDestination(Destination.CLOUD_LOGGING).build())
              .build();

      CreateJobRequest createJobRequest =
          CreateJobRequest.newBuilder()
              // The job's parent is the region in which the job will run.
              .setParent(String.format("projects/%s/locations/%s", projectId, region))
              .setJob(job)
              .setJobId(jobName)
              .build();

      Job result =
          batchServiceClient
              .createJobCallable()
              .futureCall(createJobRequest)
              .get(5, TimeUnit.MINUTES);

      System.out.printf("Successfully created the job: %s", result.getName());
    }
  }
}

Node.js

Node.js

Para mais informações, consulte a documentação de referência da API Node.js em lote.

Para autenticar no Batch, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment and replace these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
/**
 * The region you want to the job to run in. The regions that support Batch are listed here:
 * https://cloud.google.com/batch/docs/get-started#locations
 */
// const region = 'us-central-1';
/**
 * The name of the job that will be created.
 * It needs to be unique for each project and region pair.
 */
// const jobName = 'YOUR_JOB_NAME';
/**
 * The name of the bucket to be mounted.
 */
// const bucketName = 'YOUR_BUCKET_NAME';

// Imports the Batch library
const batchLib = require('@google-cloud/batch');
const batch = batchLib.protos.google.cloud.batch.v1;

// Instantiates a client
const batchClient = new batchLib.v1.BatchServiceClient();

// Define what will be done as part of the job.
const task = new batch.TaskSpec();
const runnable = new batch.Runnable();
runnable.script = new batch.Runnable.Script();
runnable.script.text =
  'echo Hello world from task ${BATCH_TASK_INDEX}. >> /mnt/share/output_task_${BATCH_TASK_INDEX}.txt';
// You can also run a script from a file. Just remember, that needs to be a script that's
// already on the VM that will be running the job. Using runnable.script.text and runnable.script.path is mutually
// exclusive.
// runnable.script.path = '/tmp/test.sh'
task.runnables = [runnable];

const gcsBucket = new batch.GCS();
gcsBucket.remotePath = bucketName;
const gcsVolume = new batch.Volume();
gcsVolume.gcs = gcsBucket;
gcsVolume.mountPath = '/mnt/share';
task.volumes = [gcsVolume];

// We can specify what resources are requested by each task.
const resources = new batch.ComputeResource();
resources.cpuMilli = 2000; // in milliseconds per cpu-second. This means the task requires 2 whole CPUs.
resources.memoryMib = 16;
task.computeResource = resources;

task.maxRetryCount = 2;
task.maxRunDuration = {seconds: 3600};

// Tasks are grouped inside a job using TaskGroups.
const group = new batch.TaskGroup();
group.taskCount = 4;
group.taskSpec = task;

// Policies are used to define on what kind of virtual machines the tasks will run on.
// In this case, we tell the system to use "e2-standard-4" machine type.
// Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
const allocationPolicy = new batch.AllocationPolicy();
const policy = new batch.AllocationPolicy.InstancePolicy();
policy.machineType = 'e2-standard-4';
const instances = new batch.AllocationPolicy.InstancePolicyOrTemplate();
instances.policy = policy;
allocationPolicy.instances = [instances];

const job = new batch.Job();
job.name = jobName;
job.taskGroups = [group];
job.allocationPolicy = allocationPolicy;
job.labels = {env: 'testing', type: 'script'};
// We use Cloud Logging as it's an option available out of the box
job.logsPolicy = new batch.LogsPolicy();
job.logsPolicy.destination = batch.LogsPolicy.Destination.CLOUD_LOGGING;

// The job's parent is the project and region in which the job will run
const parent = `projects/${projectId}/locations/${region}`;

async function callCreateJob() {
  // Construct request
  const request = {
    parent,
    jobId: jobName,
    job,
  };

  // Run request
  const response = await batchClient.createJob(request);
  console.log(response);
}

callCreateJob();

Python

Python

Para mais informações, consulte a documentação de referência da API Python em lote.

Para autenticar no Batch, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

from google.cloud import batch_v1

def create_script_job_with_bucket(
    project_id: str, region: str, job_name: str, bucket_name: str
) -> batch_v1.Job:
    """
    This method shows how to create a sample Batch Job that will run
    a simple command on Cloud Compute instances.

    Args:
        project_id: project ID or project number of the Cloud project you want to use.
        region: name of the region you want to use to run the job. Regions that are
            available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
        job_name: the name of the job that will be created.
            It needs to be unique for each project and region pair.
        bucket_name: name of the bucket to be mounted for your Job.

    Returns:
        A job object representing the job created.
    """
    client = batch_v1.BatchServiceClient()

    # Define what will be done as part of the job.
    task = batch_v1.TaskSpec()
    runnable = batch_v1.Runnable()
    runnable.script = batch_v1.Runnable.Script()
    runnable.script.text = "echo Hello world from task ${BATCH_TASK_INDEX}. >> /mnt/share/output_task_${BATCH_TASK_INDEX}.txt"
    task.runnables = [runnable]

    gcs_bucket = batch_v1.GCS()
    gcs_bucket.remote_path = bucket_name
    gcs_volume = batch_v1.Volume()
    gcs_volume.gcs = gcs_bucket
    gcs_volume.mount_path = "/mnt/share"
    task.volumes = [gcs_volume]

    # We can specify what resources are requested by each task.
    resources = batch_v1.ComputeResource()
    resources.cpu_milli = 500  # in milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
    resources.memory_mib = 16
    task.compute_resource = resources

    task.max_retry_count = 2
    task.max_run_duration = "3600s"

    # Tasks are grouped inside a job using TaskGroups.
    # Currently, it's possible to have only one task group.
    group = batch_v1.TaskGroup()
    group.task_count = 4
    group.task_spec = task

    # Policies are used to define on what kind of virtual machines the tasks will run on.
    # In this case, we tell the system to use "e2-standard-4" machine type.
    # Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
    allocation_policy = batch_v1.AllocationPolicy()
    policy = batch_v1.AllocationPolicy.InstancePolicy()
    policy.machine_type = "e2-standard-4"
    instances = batch_v1.AllocationPolicy.InstancePolicyOrTemplate()
    instances.policy = policy
    allocation_policy.instances = [instances]

    job = batch_v1.Job()
    job.task_groups = [group]
    job.allocation_policy = allocation_policy
    job.labels = {"env": "testing", "type": "script", "mount": "bucket"}
    # We use Cloud Logging as it's an out of the box available option
    job.logs_policy = batch_v1.LogsPolicy()
    job.logs_policy.destination = batch_v1.LogsPolicy.Destination.CLOUD_LOGGING

    create_request = batch_v1.CreateJobRequest()
    create_request.job = job
    create_request.job_id = job_name
    # The job's parent is the region in which the job will run
    create_request.parent = f"projects/{project_id}/locations/{region}"

    return client.create_job(create_request)

C++

C++

Para mais informações, consulte a documentação de referência da API C++ em lote.

Para autenticar no Batch, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

#include "google/cloud/batch/v1/batch_client.h"

  [](std::string const& project_id, std::string const& location_id,
     std::string const& job_id, std::string const& bucket_name) {
    // Initialize the request; start with the fields that depend on the sample
    // input.
    google::cloud::batch::v1::CreateJobRequest request;
    request.set_parent("projects/" + project_id + "/locations/" + location_id);
    request.set_job_id(job_id);
    // Most of the job description is fixed in this example; use a string to
    // initialize it, and then override the GCS remote path.
    auto constexpr kText = R"pb(
      task_groups {
        task_count: 4
        task_spec {
          compute_resource { cpu_milli: 500 memory_mib: 16 }
          max_retry_count: 2
          max_run_duration { seconds: 3600 }
          runnables {
            script {
              text: "echo Hello world from task ${BATCH_TASK_INDEX}. >> /mnt/share/output_task_${BATCH_TASK_INDEX}.txt"
            }
          }
          volumes { mount_path: "/mnt/share" }
        }
      }
      allocation_policy {
        instances {
          policy { machine_type: "e2-standard-4" provisioning_model: STANDARD }
        }
      }
      labels { key: "env" value: "testing" }
      labels { key: "type" value: "script" }
      logs_policy { destination: CLOUD_LOGGING }
    )pb";
    auto* job = request.mutable_job();
    if (!google::protobuf::TextFormat::ParseFromString(kText, job)) {
      throw std::runtime_error("Error parsing Job description");
    }
    job->mutable_task_groups(0)
        ->mutable_task_spec()
        ->mutable_volumes(0)
        ->mutable_gcs()
        ->set_remote_path(bucket_name);
    // Create a client and issue the request.
    auto client = google::cloud::batch_v1::BatchServiceClient(
        google::cloud::batch_v1::MakeBatchServiceConnection());
    auto response = client.CreateJob(request);
    if (!response) throw std::move(response).status();
    std::cout << "Job : " << response->DebugString() << "\n";
  }

Usar um sistema de arquivos de rede

É possível criar um job que use um sistema de arquivos de rede (NFS, na sigla em inglês), como um compartilhamento de arquivos do Filestore, usando o console do Google Cloud, a CLI gcloud ou a API Batch.

Antes de criar um job que use um NFS, verifique se o firewall da rede está configurado corretamente para permitir o tráfego entre as VMs do job e o NFS. Para mais informações, consulte Como configurar regras de firewall para o Filestore.

O exemplo a seguir descreve como criar um job que especifica e monta um NFS. O job também tem três tarefas, em que cada uma executa um script para criar um arquivo no NFS chamado output_task_TASK_INDEX.txt, em que TASK_INDEX é o índice de cada tarefa: 0, 1 e 2.

Console

Para criar um job que use um NFS usando o console do Google Cloud, faça o seguinte:

  1. No console do Google Cloud, acesse a página Lista de jobs.

    Acessar a lista de jobs

  2. Clique em Criar. A página Criar job em lote é aberta. No painel esquerdo, a página Detalhes do job está selecionada.

  3. Configure a página Detalhes do job:

    1. Opcional: no campo Nome do job, personalize o nome dele.

      Por exemplo, insira example-nfs-job.

    2. Configure a seção Detalhes da tarefa:

      1. Na janela Novo executável, adicione pelo menos um script ou contêiner para que esse job seja executado.

        Por exemplo, faça o seguinte:

        1. Marque a caixa de seleção Script. Uma caixa de texto será exibida.

        2. Na caixa de texto, insira este script:

          echo Hello world from task ${BATCH_TASK_INDEX}. >> MOUNT_PATH/output_task_${BATCH_TASK_INDEX}.txt
          

          Substitua MOUNT_PATH pelo caminho de ativação que o executável do job usa para acessar esse NFS. O caminho precisa começar com /mnt/disks/ seguido por um diretório ou caminho que você escolher. Por exemplo, se você quiser representar esse NFS com um diretório chamado my-nfs, defina o caminho de montagem como /mnt/disks/my-nfs.

        3. Clique em Concluído.

      2. No campo Contagem de tarefas, insira o número de tarefas deste job.

        Por exemplo, insira 3.

      3. No campo Paralelismo, insira o número de tarefas a serem executadas simultaneamente.

        Por exemplo, digite 1 (padrão).

  4. Defina a página Outras configurações:

    1. No painel à esquerda, clique em Configurações adicionais. A página Configurações adicionais é aberta.

    2. Para cada bucket do Cloud Storage que você quer ativar neste job, faça o seguinte:

      1. Na seção Volume de armazenamento, clique em Adicionar novo volume. A janela Novo volume vai aparecer.

      2. Na janela Novo volume, faça o seguinte:

        1. Na seção Tipo de volume, selecione Sistema de arquivos de rede.

        2. No campo Servidor de arquivos, insira o endereço IP do servidor em que o NFS especificado no executável deste job está localizado.

          Por exemplo, se o NFS for um compartilhamento de arquivos do Filestore, especifique o endereço IP da instância do Filestore, que pode ser conseguido descrevendo a instância do Filestore.

        3. No campo Caminho remoto, insira um caminho que possa acessar o NFS especificado na etapa anterior.

          O caminho do diretório NFS precisa começar com / seguido pelo diretório raiz do NFS.

        4. No campo Caminho de montagem, insira o caminho de ativação para o NFS (MOUNT_PATH), que você especificou na etapa anterior.

    3. Clique em Concluído.

  5. Opcional: configure os outros campos deste job.

  6. Opcional: para revisar a configuração do job, clique em Visualizar no painel esquerdo.

  7. Clique em Criar.

A página Lista de jobs exibe o job que você criou.

gcloud

Para criar um job que use um NFS com a CLI gcloud, use o comando gcloud batch jobs submit. No arquivo de configuração JSON do job, monte o NFS no campo volumes.

  1. Crie um arquivo JSON com o seguinte conteúdo:

    {
        "taskGroups": [
            {
                "taskSpec": {
                    "runnables": [
                        {
                            "script": {
                                "text": "echo Hello world from task ${BATCH_TASK_INDEX}. >> MOUNT_PATH/output_task_${BATCH_TASK_INDEX}.txt"
                            }
                        }
                    ],
                    "volumes": [
                        {
                            "nfs": {
                                "server": "NFS_IP_ADDRESS",
                                "remotePath": "NFS_PATH"
                            },
                            "mountPath": "MOUNT_PATH"
                        }
                    ]
                },
                "taskCount": 3
            }
        ],
        "logsPolicy": {
            "destination": "CLOUD_LOGGING"
        }
    }
    

    Substitua:

    • NFS_IP_ADDRESS: o endereço IP do NFS. Por exemplo, se o NFS for um compartilhamento de arquivos do Filestore, especifique o endereço IP da instância do Filestore, que pode ser conseguido descrevendo a instância do Filestore.
    • NFS_PATH: o caminho do diretório NFS que você quer que este job acesse, que precisa começar com / seguido pelo diretório raiz do NFS. Por exemplo, para um compartilhamento de arquivos do Filestore chamado FILE_SHARE_NAME, o caminho /FILE_SHARE_NAME representa o diretório raiz do compartilhamento de arquivos, e o caminho /FILE_SHARE_NAME/subdirectory representa o subdiretório subdirectory.
    • MOUNT_PATH: o caminho de ativação que os executáveis do job usam para acessar esse NFS. O caminho precisa começar com /mnt/disks/ seguido por um diretório ou caminho escolhido. Por exemplo, se você quiser representar esse NFS com um diretório chamado my-nfs, defina o caminho de montagem como /mnt/disks/my-nfs.
  2. Execute este comando:

    gcloud batch jobs submit JOB_NAME \
      --location LOCATION \
      --config JSON_CONFIGURATION_FILE
    

    Substitua:

    • JOB_NAME: o nome do job.
    • LOCATION: o local do job.
    • JSON_CONFIGURATION_FILE: o caminho para um arquivo JSON com os detalhes de configuração do job.

API

Para criar um job que use um NFS com a API Batch, use o método jobs.create e ative o NFS no campo volumes.

POST https://batch.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/jobs?job_id=JOB_NAME

   {
    "taskGroups": [
        {
            "taskSpec": {
                "runnables": [
                    {
                        "script": {
                            "text": "echo Hello world from task ${BATCH_TASK_INDEX}. >> MOUNT_PATH/output_task_${BATCH_TASK_INDEX}.txt"
                        }
                    }
                ],
                "volumes": [
                    {
                        "nfs": {
                            "server": "NFS_IP_ADDRESS",
                            "remotePath": "NFS_PATH"
                        },
                        "mountPath": "MOUNT_PATH"
                    }
                ]
            },
            "taskCount": 3
        }
    ],
    "logsPolicy": {
        "destination": "CLOUD_LOGGING"
    }
}

Substitua:

  • PROJECT_ID: o ID do projeto.
  • LOCATION: o local do job.
  • JOB_NAME: o nome do job.
  • NFS_IP_ADDRESS: o endereço IP do sistema de arquivos de rede. Por exemplo, se o NFS for um compartilhamento de arquivos do Filestore, especifique o endereço IP da instância do Filestore, que pode ser conseguido descrevendo a instância do Filestore.
  • NFS_PATH: o caminho do diretório NFS que você quer que este job acesse, que precisa começar com / seguido pelo diretório raiz do NFS. Por exemplo, para um compartilhamento de arquivos do Filestore chamado FILE_SHARE_NAME, o caminho /FILE_SHARE_NAME representa o diretório raiz do compartilhamento de arquivos e o caminho /FILE_SHARE_NAME/subdirectory representa um subdiretório.
  • MOUNT_PATH: o caminho de ativação que os executáveis do job usam para acessar esse NFS. O caminho precisa começar com /mnt/disks/ seguido por um diretório ou caminho escolhido. Por exemplo, se você quiser representar esse NFS com um diretório chamado my-nfs, defina o caminho de montagem como /mnt/disks/my-nfs.

A seguir