Crea un conjunto de datos y, luego, importa datos a este.
Explora más
Para obtener documentación en la que se incluye esta muestra de código, consulta lo siguiente:
Muestra de código
Java
import com.google.cloud.automl.v1beta1.AutoMlClient;
import com.google.cloud.automl.v1beta1.BigQuerySource;
import com.google.cloud.automl.v1beta1.DatasetName;
import com.google.cloud.automl.v1beta1.GcsSource;
import com.google.cloud.automl.v1beta1.InputConfig;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.Arrays;
import java.util.concurrent.ExecutionException;
class TablesImportDataset {
public static void main(String[] args)
throws IOException, ExecutionException, InterruptedException {
// TODO(developer): Replace these variables before running the sample.
String projectId = "YOUR_PROJECT_ID";
String datasetId = "YOUR_DATASET_ID";
String path = "gs://BUCKET_ID/path/to//data.csv or bq://project_id.dataset_id.table_id";
importDataset(projectId, datasetId, path);
}
// Import a dataset via BigQuery or Google Cloud Storage
static void importDataset(String projectId, String datasetId, String path)
throws IOException, ExecutionException, InterruptedException {
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (AutoMlClient client = AutoMlClient.create()) {
// Get the complete path of the dataset.
DatasetName datasetFullId = DatasetName.of(projectId, "us-central1", datasetId);
InputConfig.Builder inputConfigBuilder = InputConfig.newBuilder();
// Determine which source type was used for the input path (BigQuery or GCS)
if (path.startsWith("bq")) {
// Get training data file to be imported from a BigQuery source.
BigQuerySource.Builder bigQuerySource = BigQuerySource.newBuilder();
bigQuerySource.setInputUri(path);
inputConfigBuilder.setBigquerySource(bigQuerySource);
} else {
// Get multiple Google Cloud Storage URIs to import data from
GcsSource gcsSource =
GcsSource.newBuilder().addAllInputUris(Arrays.asList(path.split(","))).build();
inputConfigBuilder.setGcsSource(gcsSource);
}
// Import data from the input URI
System.out.println("Processing import...");
Empty response = client.importDataAsync(datasetFullId, inputConfigBuilder.build()).get();
System.out.format("Dataset imported. %s%n", response);
}
}
}
Node.js
const automl = require('@google-cloud/automl');
const client = new automl.v1beta1.AutoMlClient();
/**
* Demonstrates using the AutoML client to import data.
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const projectId = '[PROJECT_ID]' e.g., "my-gcloud-project";
// const computeRegion = '[REGION_NAME]' e.g., "us-central1";
// const datasetId = '[DATASET_ID]' e.g., "TBL2246891593778855936";
// const path = '[GCS_PATH]' | '[BIGQUERY_PATH]'
// e.g., "gs://<bucket-name>/<csv file>" or
// "bq://<project_id>.<dataset_id>.<table_id>",
// `string or array of paths in AutoML Tables format`;
// Get the full path of the dataset.
const datasetFullId = client.datasetPath(projectId, computeRegion, datasetId);
let inputConfig = {};
if (path.startsWith('bq')) {
// Get Bigquery URI.
inputConfig = {
bigquerySource: {
inputUri: path,
},
};
} else {
// Get the multiple Google Cloud Storage URIs.
const inputUris = path.split(',');
inputConfig = {
gcsSource: {
inputUris: inputUris,
},
};
}
// Import the dataset from the input URI.
client
.importData({name: datasetFullId, inputConfig: inputConfig})
.then(responses => {
const operation = responses[0];
console.log('Processing import...');
return operation.promise();
})
.then(responses => {
// The final result of the operation.
const operationDetails = responses[2];
// Get the data import details.
console.log('Data import details:');
console.log('\tOperation details:');
console.log(`\t\tName: ${operationDetails.name}`);
console.log(`\t\tDone: ${operationDetails.done}`);
})
.catch(err => {
console.error(err);
});
Python
# TODO(developer): Uncomment and set the following variables
# project_id = 'PROJECT_ID_HERE'
# compute_region = 'COMPUTE_REGION_HERE'
# dataset_display_name = 'DATASET_DISPLAY_NAME'
# path = 'gs://path/to/file.csv' or 'bq://project_id.dataset.table_id'
from google.cloud import automl_v1beta1 as automl
client = automl.TablesClient(project=project_id, region=compute_region)
response = None
if path.startswith("bq"):
response = client.import_data(
dataset_display_name=dataset_display_name, bigquery_input_uri=path
)
else:
# Get the multiple Google Cloud Storage URIs.
input_uris = path.split(",")
response = client.import_data(
dataset_display_name=dataset_display_name,
gcs_input_uris=input_uris,
)
print("Processing import...")
# synchronous check of operation status.
print("Data imported. {}".format(response.result()))
¿Qué sigue?
Para buscar y filtrar muestras de código en otros productos de Google Cloud, consulta el navegador de muestra de Google Cloud.