Implementa un modelo

Demuestra la implementación de un modelo.

Páginas de documentación que incluyen esta muestra de código

Para ver la muestra de código usada en contexto, consulta la siguiente documentación:

Muestra de código

Java

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1beta1.AutoMlClient;
import com.google.cloud.automl.v1beta1.DeployModelRequest;
import com.google.cloud.automl.v1beta1.ModelName;
import com.google.cloud.automl.v1beta1.OperationMetadata;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class DeployModel {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    deployModel(projectId, modelId);
  }

  // Deploy a model for prediction
  static void deployModel(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      DeployModelRequest request =
          DeployModelRequest.newBuilder().setName(modelFullId.toString()).build();
      OperationFuture<Empty, OperationMetadata> future = client.deployModelAsync(request);

      future.get();
      System.out.println("Model deployment finished");
    }
  }
}

Node.js

const automl = require('@google-cloud/automl');
const client = new automl.v1beta1.AutoMlClient();

/**
 * Demonstrates using the AutoML client to deploy model.
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const projectId = '[PROJECT_ID]' e.g., "my-gcloud-project";
// const computeRegion = '[REGION_NAME]' e.g., "us-central1";
// const modelId = '[MODEL_ID]' e.g., "TBL4704590352927948800";

// Get the full path of the model.
const modelFullId = client.modelPath(projectId, computeRegion, modelId);

// Deploy a model with the deploy model request.
client
  .deployModel({name: modelFullId})
  .then(responses => {
    const response = responses[0];
    console.log('Deployment Details:');
    console.log(`\tName: ${response.name}`);
    console.log('\tMetadata:');
    console.log(`\t\tType Url: ${response.metadata.typeUrl}`);
    console.log(`\tDone: ${response.done}`);
  })
  .catch(err => {
    console.error(err);
  });

Python

# TODO(developer): Uncomment and set the following variables
# project_id = 'PROJECT_ID_HERE'
# compute_region = 'COMPUTE_REGION_HERE'
# model_display_name = 'MODEL_DISPLAY_NAME_HERE'

from google.cloud import automl_v1beta1 as automl

client = automl.TablesClient(project=project_id, region=compute_region)

# Deploy model
response = client.deploy_model(model_display_name=model_display_name)

# synchronous check of operation status.
print("Model deployed. {}".format(response.result()))

¿Qué sigue?

Para buscar y filtrar muestras de código para otros productos de Google Cloud, consulta el navegador de muestra de Google Cloud.