In Anthos-Cluster on Bare Metal richten Sie Administratorcluster ein, um andere Cluster sicher zu verwalten. Sie können Nutzercluster aus Administratorclustern erstellen, aktualisieren und löschen. Die Nutzercluster führen Arbeitslasten getrennt von der Verwaltung aus, sodass vertrauliche Informationen geschützt sind.
Administratorcluster, die Multi-Cluster-Arbeitslasten verwalten, können Hochverfügbarkeit (HA) bieten. Wenn in einem HA-Cluster ein Knoten der Steuerungsebene ausfällt, funktionieren andere Knoten weiterhin.
Ein Administratorcluster in einer Multi-Cluster-Umgebung bietet die beste grundlegende Sicherheit. Da der Zugriff auf Verwaltungsdaten von den Arbeitslasten getrennt ist, haben Personen, die auf Nutzerarbeitslasten zugreifen, keinen Zugriff auf sensible administrative Daten wie SSH-Schlüssel und Dienstkontodaten. Deshalb ist ein Kompromiss zwischen Sicherheit und Ressourcen erforderlich, da für einen separaten Administratorcluster spezielle Ressourcen für Verwaltung und Arbeitslasten benötigt werden.
Sie erstellen einen Administratorcluster mit dem Befehl bmctl
. Nachdem Sie den Administratorcluster erstellt haben, erstellen Sie Nutzercluster, um Arbeitslasten auszuführen.
Voraussetzungen:
bmctl
herunterladen vongs://anthos-baremetal-release/bmctl/1.6.2/linux-amd64/bmctl
- Die Workstation, auf der bmctl ausgeführt wird, sollte eine Netzwerkverbindung zu allen Knoten in den Zielnutzerclustern haben.
- Die Workstation, auf der bmctl ausgeführt wird, sollte eine Netzwerkverbindung zum Cluster API-Server (VIP der Steuerungsebene) haben.
- Der SSH-Schlüssel, der zum Erstellen des Admin-Clusters verwendet wird, sollte als Root verfügbar sein, oder Sie sollten auf allen Knoten im Zieladministratorcluster Zugriff haben.
Eine ausführliche Schritt-für-Schritt-Anleitung zum Erstellen eines Hybridclusters finden Sie in der Kurzanleitung zu Anthos-Cluster on Bare Metal. Das Erstellen eines Administratorclusters ist mit dem Erstellen eines Hybridclusters vergleichbar, mit dem Unterschied, dass Sie keine Arbeitslasten auf dem Administratorcluster ausführen.
Bei gcloud anmelden und eine Konfigurationsdatei für Administratorcluster erstellen
- Melden Sie sich mit dem
gcloud auth application-default
-Log-in als Nutzer bei gcloud an: - Dienstkontoadministrator
- Zentraler Dienstkontoadministrator
- Projekt-IAM-Administrator
- Compute-Betrachter
- Service Usage-Administrator
- Rufen Sie Ihre Cloud-Projekt-ID ab, um sie bei der Clustererstellung zu verwenden:
gcloud auth application-default loginSie benötigen die Rolle „Projektinhaber/-bearbeiter“, um die Funktionen zur automatischen API-Aktivierung und zur Erstellung von Dienstkonten zu verwenden (siehe unten). Sie können dem Nutzer auch die folgenden IAM-Rollen hinzufügen:
export GOOGLE_APPLICATION_CREDENTIALS=JSON_KEY_FILEJSON_KEY_FILE gibt den Pfad zur JSON-Schlüsseldatei Ihres Dienstkontos an.
export CLOUD_PROJECT_ID=$(gcloud config get-value project)
Administratorclusterkonfiguration mit bmctl
erstellen
Nachdem Sie sich bei gcloud angemeldet und Ihr Projekt eingerichtet haben, können Sie die Cluster-Konfigurationsdatei mit dem Befehl bmctl
erstellen. Beachten Sie, dass in diesem Beispiel alle Dienstkonten automatisch mit dem Befehl bmctl create config
erstellt werden:
bmctl create config -c ADMIN_CLUSTER_NAME --enable-apis \ --create-service-accounts --project-id=CLOUD_PROJECT_ID
ADMIN_CLUSTER_NAME ist der Name des Clusters und CLOUD_PROJECT_ID Ihre Projekt-ID.
Das folgende Beispiel zeigt, wie Sie eine Konfigurationsdatei für einen Administratorcluster namens admin1
erstellen, der mit der Projekt-ID my-gcp-project
verknüpft ist:
bmctl create config -c admin1 --create-service-accounts --enable-apis --project-id=my-gcp-project
Die Datei wird in bmctl-workspace/admin1/admin1.yaml.
geschrieben.
Als Alternative zur automatischen Aktivierung von APIs und zum Erstellen von Dienstkonten können Sie Ihren vorhandenen Dienstkonten die entsprechenden IAM-Berechtigungen zuweisen. Sie können die automatische Erstellung des Dienstkontos im vorherigen Schritt im Befehl bmctl
überspringen:
bmctl create config -c admin1
Cluster-Konfigurationsdatei bearbeiten
Da Sie nun eine Clusterkonfigurationsdatei haben, bearbeiten Sie sie, um folgende Änderungen vorzunehmen:
- Geben Sie den privaten SSH-Schlüssel an, um auf die Administrator-Clusterknoten zugreifen zu können:
- Prüfen Sie, ob in der Konfiguration der Clustertyp
admin
(Standardwert) angegeben ist: - Ändern Sie die Konfigurationsdatei, um eine Steuerungsebene mit mehreren Knoten und Hochverfügbarkeit anzugeben. Geben Sie eine ungerade Anzahl von Knoten ein, die für ein Großteil des Quorums über HA geeignet sein sollen:
# bmctl configuration variables. Because this section is valid YAML but not a valid Kubernetes # resource, this section can only be included when using bmctl to # create the initial admin/admin cluster. Afterwards, when creating user clusters by directly # applying the cluster and node pool resources to the existing cluster, you must remove this # section. gcrKeyPath: /bmctl/bmctl-workspace/.sa-keys/my-gcp-project-anthos-baremetal-gcr.json sshPrivateKeyPath: /path/to/your/ssh_private_key gkeConnectAgentServiceAccountKeyPath: /bmctl/bmctl-workspace/.sa-keys/my-gcp-project-anthos-baremetal-connect.json gkeConnectRegisterServiceAccountKeyPath: /bmctl/bmctl-workspace/.sa-keys/my-gcp-project-anthos-baremetal-register.json cloudOperationsServiceAccountKeyPath: /bmctl/bmctl-workspace/.sa-keys/my-gcp-project-anthos-baremetal-cloud-ops.json
spec: # Cluster type. This can be: # 1) admin: to create an admin cluster. This can later be used to create user clusters. # 2) user: to create a user cluster. Requires an existing admin cluster. # 3) hybrid: to create a hybrid cluster that runs admin cluster components and user workloads. # 4) standalone: to create a cluster that manages itself, runs user workloads, but does not manage other clusters. type: admin
# Control plane configuration controlPlane: nodePoolSpec: nodes: # Control plane node pools. Typically, this is either a single machine # or 3 machines if using a high availability deployment. - address: 10.200.0.4 - address: 10.200.0.5 - address: 10.200.0.6
Administratorcluster mit Clusterkonfiguration erstellen
Stellen Sie den Cluster mit dem Befehl bmctl
bereit:
bmctl create cluster -c ADMIN_CLUSTER_NAME
ADMIN_CLUSTER_NAME gibt den im vorherigen Abschnitt erstellten Clusternamen an.
Im Folgenden sehen Sie ein Beispiel für den Befehl zum Erstellen eines Clusters mit dem Namen admin1
:
bmctl create cluster -c admin1
Beispiel für die vollständige Konfiguration eines Administratorclusters
Das folgende Beispiel zeigt eine Konfigurationsdatei für einen Administratorcluster, die mit dem Befehl bmctl
erstellt wurde.
Beachten Sie, dass in dieser Beispielkonfiguration Platzhalterclusternamen, VIPs und Adressen verwendet werden. Sie funktionieren in Ihrem Netzwerk möglicherweise nicht.
gcrKeyPath: /bmctl/bmctl-workspace/.sa-keys/my-gcp-project-anthos-baremetal-gcr.json sshPrivateKeyPath: /bmctl/bmctl-workspace/.ssh/id_rsa gkeConnectAgentServiceAccountKeyPath: /bmctl/bmctl-workspace/.sa-keys/my-gcp-project-anthos-baremetal-connect.json gkeConnectRegisterServiceAccountKeyPath: /bmctl/bmctl-workspace/.sa-keys/my-gcp-project-anthos-baremetal-register.json cloudOperationsServiceAccountKeyPath: /bmctl/bmctl-workspace/.sa-keys/my-gcp-project-anthos-baremetal-cloud-ops.json --- apiVersion: v1 kind: Namespace metadata: name: cluster-admin1 --- apiVersion: baremetal.cluster.gke.io/v1 kind: Cluster metadata: name: admin1 namespace: cluster-admin1 spec: # Cluster type. This can be: # 1) admin: to create an admin cluster. This can later be used to create user clusters. # 2) user: to create a user cluster. Requires an existing admin cluster. # 3) hybrid: to create a hybrid cluster that runs admin cluster components and user workloads. # 4) standalone: to create a cluster that manages itself, runs user workloads, but does not manage other clusters. type: admin # Anthos cluster version. anthosBareMetalVersion: v1.6.2 # GKE connect configuration gkeConnect: projectID: $GOOGLE_PROJECT_ID # Control plane configuration controlPlane: nodePoolSpec: nodes: # Control plane node pools. Typically, this is either a single machine # or 3 machines if using a high availability deployment. - address: 10.200.0.4 - address: 10.200.0.5 - address: 10.200.0.6 # Cluster networking configuration clusterNetwork: # Pods specify the IP ranges from which Pod networks are allocated. pods: cidrBlocks: - 192.168.0.0/16 # Services specify the network ranges from which service VIPs are allocated. # This can be any RFC 1918 range that does not conflict with any other IP range # in the cluster and node pool resources. services: cidrBlocks: - 10.96.0.0/12 # Load balancer configuration loadBalancer: # Load balancer mode can be either 'bundled' or 'manual'. # In 'bundled' mode a load balancer will be installed on load balancer nodes during cluster creation. # In 'manual' mode the cluster relies on a manually-configured external load balancer. mode: bundled # Load balancer port configuration ports: # Specifies the port the LB serves the kubernetes control plane on. # In 'manual' mode the external load balancer must be listening on this port. controlPlaneLBPort: 443 # There are two load balancer VIPs: one for the control plane and one for the L7 Ingress # service. The VIPs must be in the same subnet as the load balancer nodes. vips: # ControlPlaneVIP specifies the VIP to connect to the Kubernetes API server. # This address must not be in the address pools below. controlPlaneVIP: 10.200.0.71 # IngressVIP specifies the VIP shared by all services for ingress traffic. # Allowed only in non-admin clusters. # This address must be in the address pools below. # ingressVIP: 10.0.0.2 # AddressPools is a list of non-overlapping IP ranges for the data plane load balancer. # All addresses must be in the same subnet as the load balancer nodes. # Address pool configuration is only valid for 'bundled' LB mode in non-admin clusters. # addressPools: # - name: pool1 # addresses: # # Each address must be either in the CIDR form (1.2.3.0/24) # # or range form (1.2.3.1-1.2.3.5). # - 10.0.0.1-10.0.0.4 # A load balancer nodepool can be configured to specify nodes used for load balancing. # These nodes are part of the kubernetes cluster and run regular workloads as well as load balancers. # If the node pool config is absent then the control plane nodes are used. # Node pool configuration is only valid for 'bundled' LB mode. # nodePoolSpec: # nodes: # - address: <Machine 1 IP> # Proxy configuration # proxy: # url: http://[username:password@]domain # # A list of IPs, hostnames or domains that should not be proxied. # noProxy: # - 127.0.0.1 # - localhost # Logging and Monitoring clusterOperations: # Cloud project for logs and metrics. projectID: <Google Project ID>$GOOGLE_PROJECT_ID # Cloud location for logs and metrics. location: us-central1 # Whether collection of application logs/metrics should be enabled (in addition to # collection of system logs/metrics which correspond to system components such as # Kubernetes control plane or cluster management agents). # enableApplication: false # Storage configuration storage: # lvpNodeMounts specifies the config for local PersistentVolumes backed by mounted disks. # These disks need to be formatted and mounted by the user, which can be done before or after # cluster creation. lvpNodeMounts: # path specifies the host machine path where mounted disks will be discovered and a local PV # will be created for each mount. path: /mnt/localpv-disk # storageClassName specifies the StorageClass that PVs will be created with. The StorageClass # is created during cluster creation. storageClassName: local-disks # lvpShare specifies the config for local PersistentVolumes backed by subdirectories in a shared filesystem. # These subdirectories are automatically created during cluster creation. lvpShare: # path specifies the host machine path where subdirectories will be created on each host. A local PV # will be created for each subdirectory. path: /mnt/localpv-share # storageClassName specifies the StorageClass that PVs will be created with. The StorageClass # is created during cluster creation. storageClassName: local-shared # numPVUnderSharedPath specifies the number of subdirectories to create under path. numPVUnderSharedPath: 5 # Authentication; uncomment this section if you wish to enable authentication to the cluster with OpenID Connect. # authentication: # oidc: # # issuerURL specifies the URL of your OpenID provider, such as "https://accounts.google.com". The Kubernetes API # # server uses this URL to discover public keys for verifying tokens. Must use HTTPS. # issuerURL: <URL for OIDC Provider; required> # # clientID specifies the ID for the client application that makes authentication requests to the OpenID # # provider. # clientID: <ID for OIDC client application; required> # # clientSecret specifies the secret for the client application. # clientSecret: <Secret for OIDC client application; optional> # # kubectlRedirectURL specifies the redirect URL (required) for the gcloud CLI, such as # # "http://localhost:[PORT]/callback". # kubectlRedirectURL: <Redirect URL for the gcloud CLI; optional default is "http://kubectl.redirect.invalid" # # username specifies the JWT claim to use as the username. The default is "sub", which is expected to be a # # unique identifier of the end user. # username: <JWT claim to use as the username; optional, default is "sub"> # # usernamePrefix specifies the prefix prepended to username claims to prevent clashes with existing names. # usernamePrefix: <Prefix prepended to username claims; optional> # # group specifies the JWT claim that the provider will use to return your security groups. # group: <JWT claim to use as the group name; optional> # # groupPrefix specifies the prefix prepended to group claims to prevent clashes with existing names. # groupPrefix: <Prefix prepended to group claims; optional> # # scopes specifies additional scopes to send to the OpenID provider as a comma-delimited list. # scopes: Additional scopes to send to OIDC provider as a comma-separated list; optional> # # extraParams specifies additional key-value parameters to send to the OpenID provider as a comma-delimited # # list. # extraParams: Additional key-value parameters to send to OIDC provider as a comma-separated list; optional> # # certificateAuthorityData specifies a Base64 PEM-encoded certificate authority certificate of your identity # # provider. It's not needed if your identity provider's certificate was issued by a well-known public CA. # certificateAuthorityData: Base64 PEM-encoded certificate authority certificate of your OIDC provider; optional> # Node access configuration; uncomment this section if you wish to use a non-root user # with passwordless sudo capability for machine login. # nodeAccess: # loginUser: login user name