Mendeteksi teks dalam file (PDF/TIFF)

Vision API dapat mendeteksi dan mentranskripsikan teks dari file PDF dan TIFF yang disimpan di Cloud Storage.

Deteksi teks dokumen dari PDF dan TIFF harus diminta menggunakan fungsi files:asyncBatchAnnotate, yang melakukan permintaan offline (asinkron) dan memberikan statusnya menggunakan resource operations.

Output dari permintaan PDF/TIFF ditulis ke file JSON yang dibuat dalam bucket Cloud Storage yang ditentukan.

Batasan

Vision API menerima file PDF/TIFF hingga 2000 halaman. File yang lebih besar akan menghasilkan error.

Autentikasi

Kunci API tidak didukung untuk permintaan files:asyncBatchAnnotate. Baca Menggunakan akun layanan untuk mendapatkan petunjuk tentang cara mengautentikasi menggunakan akun layanan.

Akun yang digunakan untuk autentikasi harus memiliki akses ke bucket Cloud Storage yang Anda tentukan untuk output (roles/editor atau roles/storage.objectCreator atau lebih tinggi).

Anda dapat menggunakan kunci API untuk membuat kueri status operasi; lihat bagian Menggunakan kunci API untuk mendapatkan petunjuk.

Permintaan deteksi teks dokumen

Saat ini deteksi dokumen PDF/TIFF hanya tersedia untuk file yang disimpan di bucket Cloud Storage. File JSON respons disimpan secara serupa ke bucket Cloud Storage.

Halaman PDF sensus AS 2010
gs://cloud-samples-data/vision/pdf_tiff/census2010.pdf .Sumber . Biro Sensus Amerika Serikat.

REST

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • CLOUD_STORAGE_BUCKET: Bucket/direktori Cloud Storage tempat file output disimpan, yang dinyatakan dalam bentuk berikut:
    • gs://bucket/directory/
    Pengguna yang meminta harus memiliki izin tulis ke bucket.
  • CLOUD_STORAGE_FILE_URI: jalur ke file yang valid (PDF/TIFF) di bucket Cloud Storage. Anda setidaknya harus memiliki hak istimewa baca ke file tersebut. Contoh:
    • gs://cloud-samples-data/vision/pdf_tiff/census2010.pdf
  • FEATURE_TYPE: Jenis fitur yang valid. Untuk permintaan files:asyncBatchAnnotate, Anda dapat menggunakan jenis fitur berikut:
    • DOCUMENT_TEXT_DETECTION
    • TEXT_DETECTION
  • PROJECT_ID: ID project Google Cloud Anda.

Pertimbangkan khusus kolom:

  • inputConfig - menggantikan kolom image yang digunakan dalam permintaan Vision API lainnya. Pesan ini berisi dua kolom turunan:
    • gcsSource.uri - URI Google Cloud Storage file PDF atau TIFF (dapat diakses oleh pengguna atau akun layanan yang membuat permintaan).
    • mimeType - salah satu jenis file yang diterima: application/pdf atau image/tiff.
  • outputConfig - menentukan detail output. Pesan ini berisi dua kolom turunan:
    • gcsDestination.uri - URI Google Cloud Storage yang valid. Bucket harus dapat ditulis oleh pengguna atau akun layanan yang membuat permintaan. Nama filenya adalah output-x-to-y, dengan x dan y mewakili nomor halaman PDF/TIFF yang disertakan dalam file output tersebut. Jika file tersebut ada, isinya akan ditimpa.
    • batchSize - menentukan jumlah halaman output yang harus disertakan di setiap file JSON output.

Metode HTTP dan URL:

POST https://vision.googleapis.com/v1/files:asyncBatchAnnotate

Isi JSON permintaan:

{
  "requests":[
    {
      "inputConfig": {
        "gcsSource": {
          "uri": "CLOUD_STORAGE_FILE_URI"
        },
        "mimeType": "application/pdf"
      },
      "features": [
        {
          "type": "FEATURE_TYPE"
        }
      ],
      "outputConfig": {
        "gcsDestination": {
          "uri": "CLOUD_STORAGE_BUCKET"
        },
        "batchSize": 1
      }
    }
  ]
}

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/files:asyncBatchAnnotate"

PowerShell

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/files:asyncBatchAnnotate" | Select-Object -Expand Content
Respons:

Permintaan asyncBatchAnnotate yang berhasil akan menampilkan respons dengan satu kolom nama:

{
  "name": "projects/usable-auth-library/operations/1efec2285bd442df"
}

Nama ini mewakili operasi yang berjalan lama dengan ID terkait (misalnya, 1efec2285bd442df), yang dapat dikueri menggunakan v1.operations API.

Untuk mengambil respons anotasi Vision, kirim permintaan GET ke endpoint v1.operations, dengan meneruskan ID operasi di URL:

GET https://vision.googleapis.com/v1/operations/operation-id

Contoh:

curl -X GET -H "Authorization: Bearer $(gcloud auth application-default print-access-token)" \
-H "Content-Type: application/json" \
https://vision.googleapis.com/v1/projects/project-id/locations/location-id/operations/1efec2285bd442df

Jika operasi sedang berlangsung:

{
  "name": "operations/1efec2285bd442df",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.vision.v1.OperationMetadata",
    "state": "RUNNING",
    "createTime": "2019-05-15T21:10:08.401917049Z",
    "updateTime": "2019-05-15T21:10:33.700763554Z"
  }
}

Setelah operasi selesai, state akan ditampilkan sebagai DONE dan hasilnya ditulis ke file Google Cloud Storage yang Anda tentukan:

{
  "name": "operations/1efec2285bd442df",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.vision.v1.OperationMetadata",
    "state": "DONE",
    "createTime": "2019-05-15T20:56:30.622473785Z",
    "updateTime": "2019-05-15T20:56:41.666379749Z"
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.cloud.vision.v1.AsyncBatchAnnotateFilesResponse",
    "responses": [
      {
        "outputConfig": {
          "gcsDestination": {
            "uri": "gs://your-bucket-name/folder/"
          },
          "batchSize": 1
        }
      }
    ]
  }
}

JSON dalam file output Anda mirip dengan [permintaan deteksi teks dokumen](/vision/docs/ocr) gambar, dengan penambahan kolom context yang menunjukkan lokasi PDF atau TIFF yang ditentukan dan jumlah halaman dalam file:

output-1-to-1.json

Go

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Go di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Go API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


// detectAsyncDocumentURI performs Optical Character Recognition (OCR) on a
// PDF file stored in GCS.
func detectAsyncDocumentURI(w io.Writer, gcsSourceURI, gcsDestinationURI string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	request := &visionpb.AsyncBatchAnnotateFilesRequest{
		Requests: []*visionpb.AsyncAnnotateFileRequest{
			{
				Features: []*visionpb.Feature{
					{
						Type: visionpb.Feature_DOCUMENT_TEXT_DETECTION,
					},
				},
				InputConfig: &visionpb.InputConfig{
					GcsSource: &visionpb.GcsSource{Uri: gcsSourceURI},
					// Supported MimeTypes are: "application/pdf" and "image/tiff".
					MimeType: "application/pdf",
				},
				OutputConfig: &visionpb.OutputConfig{
					GcsDestination: &visionpb.GcsDestination{Uri: gcsDestinationURI},
					// How many pages should be grouped into each json output file.
					BatchSize: 2,
				},
			},
		},
	}

	operation, err := client.AsyncBatchAnnotateFiles(ctx, request)
	if err != nil {
		return err
	}

	fmt.Fprintf(w, "Waiting for the operation to finish.")

	resp, err := operation.Wait(ctx)
	if err != nil {
		return err
	}

	fmt.Fprintf(w, "%v", resp)

	return nil
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan Memulai Vision API Menggunakan Library Klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Java Vision API.

/**
 * Performs document text OCR with PDF/TIFF as source files on Google Cloud Storage.
 *
 * @param gcsSourcePath The path to the remote file on Google Cloud Storage to detect document
 *     text on.
 * @param gcsDestinationPath The path to the remote file on Google Cloud Storage to store the
 *     results on.
 * @throws Exception on errors while closing the client.
 */
public static void detectDocumentsGcs(String gcsSourcePath, String gcsDestinationPath)
    throws Exception {

  // Initialize client that will be used to send requests. This client only needs to be created
  // once, and can be reused for multiple requests. After completing all of your requests, call
  // the "close" method on the client to safely clean up any remaining background resources.
  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    List<AsyncAnnotateFileRequest> requests = new ArrayList<>();

    // Set the GCS source path for the remote file.
    GcsSource gcsSource = GcsSource.newBuilder().setUri(gcsSourcePath).build();

    // Create the configuration with the specified MIME (Multipurpose Internet Mail Extensions)
    // types
    InputConfig inputConfig =
        InputConfig.newBuilder()
            .setMimeType(
                "application/pdf") // Supported MimeTypes: "application/pdf", "image/tiff"
            .setGcsSource(gcsSource)
            .build();

    // Set the GCS destination path for where to save the results.
    GcsDestination gcsDestination =
        GcsDestination.newBuilder().setUri(gcsDestinationPath).build();

    // Create the configuration for the System.output with the batch size.
    // The batch size sets how many pages should be grouped into each json System.output file.
    OutputConfig outputConfig =
        OutputConfig.newBuilder().setBatchSize(2).setGcsDestination(gcsDestination).build();

    // Select the Feature required by the vision API
    Feature feature = Feature.newBuilder().setType(Feature.Type.DOCUMENT_TEXT_DETECTION).build();

    // Build the OCR request
    AsyncAnnotateFileRequest request =
        AsyncAnnotateFileRequest.newBuilder()
            .addFeatures(feature)
            .setInputConfig(inputConfig)
            .setOutputConfig(outputConfig)
            .build();

    requests.add(request);

    // Perform the OCR request
    OperationFuture<AsyncBatchAnnotateFilesResponse, OperationMetadata> response =
        client.asyncBatchAnnotateFilesAsync(requests);

    System.out.println("Waiting for the operation to finish.");

    // Wait for the request to finish. (The result is not used, since the API saves the result to
    // the specified location on GCS.)
    List<AsyncAnnotateFileResponse> result =
        response.get(180, TimeUnit.SECONDS).getResponsesList();

    // Once the request has completed and the System.output has been
    // written to GCS, we can list all the System.output files.
    Storage storage = StorageOptions.getDefaultInstance().getService();

    // Get the destination location from the gcsDestinationPath
    Pattern pattern = Pattern.compile("gs://([^/]+)/(.+)");
    Matcher matcher = pattern.matcher(gcsDestinationPath);

    if (matcher.find()) {
      String bucketName = matcher.group(1);
      String prefix = matcher.group(2);

      // Get the list of objects with the given prefix from the GCS bucket
      Bucket bucket = storage.get(bucketName);
      com.google.api.gax.paging.Page<Blob> pageList = bucket.list(BlobListOption.prefix(prefix));

      Blob firstOutputFile = null;

      // List objects with the given prefix.
      System.out.println("Output files:");
      for (Blob blob : pageList.iterateAll()) {
        System.out.println(blob.getName());

        // Process the first System.output file from GCS.
        // Since we specified batch size = 2, the first response contains
        // the first two pages of the input file.
        if (firstOutputFile == null) {
          firstOutputFile = blob;
        }
      }

      // Get the contents of the file and convert the JSON contents to an AnnotateFileResponse
      // object. If the Blob is small read all its content in one request
      // (Note: the file is a .json file)
      // Storage guide: https://cloud.google.com/storage/docs/downloading-objects
      String jsonContents = new String(firstOutputFile.getContent());
      Builder builder = AnnotateFileResponse.newBuilder();
      JsonFormat.parser().merge(jsonContents, builder);

      // Build the AnnotateFileResponse object
      AnnotateFileResponse annotateFileResponse = builder.build();

      // Parse through the object to get the actual response for the first page of the input file.
      AnnotateImageResponse annotateImageResponse = annotateFileResponse.getResponses(0);

      // Here we print the full text from the first page.
      // The response contains more information:
      // annotation/pages/blocks/paragraphs/words/symbols
      // including confidence score and bounding boxes
      System.out.format("%nText: %s%n", annotateImageResponse.getFullTextAnnotation().getText());
    } else {
      System.out.println("No MATCH");
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Node.js API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision').v1;

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// Bucket where the file resides
// const bucketName = 'my-bucket';
// Path to PDF file within bucket
// const fileName = 'path/to/document.pdf';
// The folder to store the results
// const outputPrefix = 'results'

const gcsSourceUri = `gs://${bucketName}/${fileName}`;
const gcsDestinationUri = `gs://${bucketName}/${outputPrefix}/`;

const inputConfig = {
  // Supported mime_types are: 'application/pdf' and 'image/tiff'
  mimeType: 'application/pdf',
  gcsSource: {
    uri: gcsSourceUri,
  },
};
const outputConfig = {
  gcsDestination: {
    uri: gcsDestinationUri,
  },
};
const features = [{type: 'DOCUMENT_TEXT_DETECTION'}];
const request = {
  requests: [
    {
      inputConfig: inputConfig,
      features: features,
      outputConfig: outputConfig,
    },
  ],
};

const [operation] = await client.asyncBatchAnnotateFiles(request);
const [filesResponse] = await operation.promise();
const destinationUri =
  filesResponse.responses[0].outputConfig.gcsDestination.uri;
console.log('Json saved to: ' + destinationUri);

Python

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Python API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

def async_detect_document(gcs_source_uri, gcs_destination_uri):
    """OCR with PDF/TIFF as source files on GCS"""
    import json
    import re
    from google.cloud import vision
    from google.cloud import storage

    # Supported mime_types are: 'application/pdf' and 'image/tiff'
    mime_type = "application/pdf"

    # How many pages should be grouped into each json output file.
    batch_size = 2

    client = vision.ImageAnnotatorClient()

    feature = vision.Feature(type_=vision.Feature.Type.DOCUMENT_TEXT_DETECTION)

    gcs_source = vision.GcsSource(uri=gcs_source_uri)
    input_config = vision.InputConfig(gcs_source=gcs_source, mime_type=mime_type)

    gcs_destination = vision.GcsDestination(uri=gcs_destination_uri)
    output_config = vision.OutputConfig(
        gcs_destination=gcs_destination, batch_size=batch_size
    )

    async_request = vision.AsyncAnnotateFileRequest(
        features=[feature], input_config=input_config, output_config=output_config
    )

    operation = client.async_batch_annotate_files(requests=[async_request])

    print("Waiting for the operation to finish.")
    operation.result(timeout=420)

    # Once the request has completed and the output has been
    # written to GCS, we can list all the output files.
    storage_client = storage.Client()

    match = re.match(r"gs://([^/]+)/(.+)", gcs_destination_uri)
    bucket_name = match.group(1)
    prefix = match.group(2)

    bucket = storage_client.get_bucket(bucket_name)

    # List objects with the given prefix, filtering out folders.
    blob_list = [
        blob
        for blob in list(bucket.list_blobs(prefix=prefix))
        if not blob.name.endswith("/")
    ]
    print("Output files:")
    for blob in blob_list:
        print(blob.name)

    # Process the first output file from GCS.
    # Since we specified batch_size=2, the first response contains
    # the first two pages of the input file.
    output = blob_list[0]

    json_string = output.download_as_bytes().decode("utf-8")
    response = json.loads(json_string)

    # The actual response for the first page of the input file.
    first_page_response = response["responses"][0]
    annotation = first_page_response["fullTextAnnotation"]

    # Here we print the full text from the first page.
    # The response contains more information:
    # annotation/pages/blocks/paragraphs/words/symbols
    # including confidence scores and bounding boxes
    print("Full text:\n")
    print(annotation["text"])

gcloud

Perintah gcloud yang Anda gunakan bergantung pada jenis file.

  • Untuk melakukan deteksi teks PDF, gunakan perintah gcloud ml vision detect-text-pdf seperti yang ditunjukkan dalam contoh berikut:

    gcloud ml vision detect-text-pdf gs://my_bucket/input_file  gs://my_bucket/out_put_prefix
    
  • Untuk melakukan deteksi teks TIFF, gunakan perintah gcloud ml vision detect-text-tiff seperti yang ditunjukkan dalam contoh berikut:

    gcloud ml vision detect-text-tiff gs://my_bucket/input_file  gs://my_bucket/out_put_prefix
    

Bahasa tambahan

C# : Ikuti Petunjuk penyiapan C# di halaman library klien, lalu kunjungi Dokumentasi referensi vision untuk .NET.

PHP : Ikuti Petunjuk penyiapan PHP di halaman library klien, lalu kunjungi Dokumentasi referensi vision untuk PHP.

Ruby : Ikuti Petunjuk penyiapan Ruby di halaman library klien, lalu kunjungi Dokumentasi referensi Vision untuk Ruby.

Dukungan multi-regional

Sekarang Anda dapat menentukan penyimpanan data tingkat benua dan pemrosesan OCR. Wilayah berikut saat ini didukung:

  • us: Khusus negara AS
  • eu: Uni Eropa

Lokasi

Cloud Vision menawarkan Anda beberapa kontrol terkait lokasi penyimpanan dan pemrosesan resource untuk project Anda. Secara khusus, Anda dapat mengonfigurasi Cloud Vision untuk menyimpan dan memproses data hanya di Uni Eropa.

Secara default, Cloud Vision menyimpan dan memproses resource di lokasi Global, yang berarti bahwa Cloud Vision tidak menjamin resource Anda akan tetap berada dalam lokasi atau region tertentu. Jika Anda memilih lokasi Uni Eropa, Google akan menyimpan data Anda dan memprosesnya hanya di Uni Eropa. Anda dan pengguna Anda dapat mengakses data dari lokasi mana pun.

Menetapkan lokasi menggunakan API

Vision API mendukung endpoint API global (vision.googleapis.com) dan juga dua endpoint berbasis region: endpoint Uni Eropa (eu-vision.googleapis.com) dan endpoint Amerika Serikat (us-vision.googleapis.com ). Gunakan endpoint ini untuk pemrosesan khusus per region. Misalnya, untuk menyimpan dan memproses data Anda hanya di Uni Eropa, gunakan URI eu-vision.googleapis.com sebagai pengganti vision.googleapis.com untuk panggilan REST API Anda:

  • https://eu-vision.googleapis.com/v1/projects/PROJECT_ID/locations/eu/images:annotate
  • https://eu-vision.googleapis.com/v1/projects/PROJECT_ID/locations/eu/images:asyncBatchAnnotate
  • https://eu-vision.googleapis.com/v1/projects/PROJECT_ID/locations/eu/files:annotate
  • https://eu-vision.googleapis.com/v1/projects/PROJECT_ID/locations/eu/files:asyncBatchAnnotate

Untuk menyimpan dan memproses data Anda hanya di Amerika Serikat, gunakan endpoint AS (us-vision.googleapis.com) dengan metode sebelumnya.

Menetapkan lokasi menggunakan library klien

Library klien Vision API mengakses endpoint API global (vision.googleapis.com) secara default. Untuk menyimpan dan memproses data hanya di Uni Eropa, Anda perlu menetapkan endpoint (eu-vision.googleapis.com). secara eksplisit. Contoh kode berikut menunjukkan cara mengonfigurasi setelan ini.

REST

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • REGION_ID: Salah satu ID lokasi regional yang valid:
    • us: Khusus negara AS
    • eu: Uni Eropa
  • CLOUD_STORAGE_IMAGE_URI: jalur ke file gambar yang valid di bucket Cloud Storage. Anda setidaknya harus memiliki hak istimewa baca ke file tersebut. Contoh:
    • gs://cloud-samples-data/vision/pdf_tiff/census2010.pdf
  • CLOUD_STORAGE_BUCKET: Bucket/direktori Cloud Storage tempat file output disimpan, yang dinyatakan dalam bentuk berikut:
    • gs://bucket/directory/
    Pengguna yang meminta harus memiliki izin tulis ke bucket.
  • FEATURE_TYPE: Jenis fitur yang valid. Untuk permintaan files:asyncBatchAnnotate, Anda dapat menggunakan jenis fitur berikut:
    • DOCUMENT_TEXT_DETECTION
    • TEXT_DETECTION
  • PROJECT_ID: ID project Google Cloud Anda.

Pertimbangkan khusus kolom:

  • inputConfig - menggantikan kolom image yang digunakan dalam permintaan Vision API lainnya. Pesan ini berisi dua kolom turunan:
    • gcsSource.uri - URI Google Cloud Storage file PDF atau TIFF (dapat diakses oleh pengguna atau akun layanan yang membuat permintaan).
    • mimeType - salah satu jenis file yang diterima: application/pdf atau image/tiff.
  • outputConfig - menentukan detail output. Pesan ini berisi dua kolom turunan:
    • gcsDestination.uri - URI Google Cloud Storage yang valid. Bucket harus dapat ditulis oleh pengguna atau akun layanan yang membuat permintaan. Nama filenya adalah output-x-to-y, dengan x dan y mewakili nomor halaman PDF/TIFF yang disertakan dalam file output tersebut. Jika file tersebut ada, isinya akan ditimpa.
    • batchSize - menentukan jumlah halaman output yang harus disertakan di setiap file JSON output.

Metode HTTP dan URL:

POST https://REGION_ID-vision.googleapis.com/v1/projects/PROJECT_ID/locations/REGION_ID/files:asyncBatchAnnotate

Isi JSON permintaan:

{
  "requests":[
    {
      "inputConfig": {
        "gcsSource": {
          "uri": "CLOUD_STORAGE_IMAGE_URI"
        },
        "mimeType": "application/pdf"
      },
      "features": [
        {
          "type": "FEATURE_TYPE"
        }
      ],
      "outputConfig": {
        "gcsDestination": {
          "uri": "CLOUD_STORAGE_BUCKET"
        },
        "batchSize": 1
      }
    }
  ]
}

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://REGION_ID-vision.googleapis.com/v1/projects/PROJECT_ID/locations/REGION_ID/files:asyncBatchAnnotate"

PowerShell

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://REGION_ID-vision.googleapis.com/v1/projects/PROJECT_ID/locations/REGION_ID/files:asyncBatchAnnotate" | Select-Object -Expand Content
Respons:

Permintaan asyncBatchAnnotate yang berhasil akan menampilkan respons dengan satu kolom nama:

{
  "name": "projects/usable-auth-library/operations/1efec2285bd442df"
}

Nama ini mewakili operasi yang berjalan lama dengan ID terkait (misalnya, 1efec2285bd442df), yang dapat dikueri menggunakan v1.operations API.

Untuk mengambil respons anotasi Vision, kirim permintaan GET ke endpoint v1.operations, dengan meneruskan ID operasi di URL:

GET https://vision.googleapis.com/v1/operations/operation-id

Contoh:

curl -X GET -H "Authorization: Bearer $(gcloud auth application-default print-access-token)" \
-H "Content-Type: application/json" \
https://vision.googleapis.com/v1/projects/project-id/locations/location-id/operations/1efec2285bd442df

Jika operasi sedang berlangsung:

{
  "name": "operations/1efec2285bd442df",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.vision.v1.OperationMetadata",
    "state": "RUNNING",
    "createTime": "2019-05-15T21:10:08.401917049Z",
    "updateTime": "2019-05-15T21:10:33.700763554Z"
  }
}

Setelah operasi selesai, state akan ditampilkan sebagai DONE dan hasilnya ditulis ke file Google Cloud Storage yang Anda tentukan:

{
  "name": "operations/1efec2285bd442df",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.vision.v1.OperationMetadata",
    "state": "DONE",
    "createTime": "2019-05-15T20:56:30.622473785Z",
    "updateTime": "2019-05-15T20:56:41.666379749Z"
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.cloud.vision.v1.AsyncBatchAnnotateFilesResponse",
    "responses": [
      {
        "outputConfig": {
          "gcsDestination": {
            "uri": "gs://your-bucket-name/folder/"
          },
          "batchSize": 1
        }
      }
    ]
  }
}

feature. JSON dalam file output Anda serupa dengan file gambar deteksi teks dokumen respons jika Anda menggunakanDOCUMENT_TEXT_DETECTION baru, atau deteksi teks respon jika Anda menggunakanTEXT_DETECTION aplikasi baru. Outputnya akan memiliki kolom context tambahan yang menunjukkan lokasi PDF atau TIFF yang ditentukan dan jumlah halaman dalam file tersebut:

output-1-to-1.json

Go

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Go di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Go API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"

	vision "cloud.google.com/go/vision/apiv1"
	"google.golang.org/api/option"
)

// setEndpoint changes your endpoint.
func setEndpoint(endpoint string) error {
	// endpoint := "eu-vision.googleapis.com:443"

	ctx := context.Background()
	client, err := vision.NewImageAnnotatorClient(ctx, option.WithEndpoint(endpoint))
	if err != nil {
		return fmt.Errorf("NewImageAnnotatorClient: %w", err)
	}
	defer client.Close()

	return nil
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan Memulai Vision API Menggunakan Library Klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Java Vision API.

ImageAnnotatorSettings settings =
    ImageAnnotatorSettings.newBuilder().setEndpoint("eu-vision.googleapis.com:443").build();

// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
ImageAnnotatorClient client = ImageAnnotatorClient.create(settings);

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Node.js API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');

async function setEndpoint() {
  // Specifies the location of the api endpoint
  const clientOptions = {apiEndpoint: 'eu-vision.googleapis.com'};

  // Creates a client
  const client = new vision.ImageAnnotatorClient(clientOptions);

  // Performs text detection on the image file
  const [result] = await client.textDetection('./resources/wakeupcat.jpg');
  const labels = result.textAnnotations;
  console.log('Text:');
  labels.forEach(label => console.log(label.description));
}
setEndpoint();

Python

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Python API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

from google.cloud import vision

client_options = {"api_endpoint": "eu-vision.googleapis.com"}

client = vision.ImageAnnotatorClient(client_options=client_options)

Cobalah sendiri

Jika Anda baru menggunakan Google Cloud, buat akun untuk mengevaluasi performa Cloud Vision API dalam skenario dunia nyata. Pelanggan baru mendapatkan kredit gratis senilai $300 untuk menjalankan, menguji, dan men-deploy workload.

Coba gratis Cloud Vision API