Rilevamento del testo nelle immagini

Riconoscimento ottico dei caratteri (OCR)

L'API Vision è in grado di rilevare ed estrarre il testo dalle immagini. Esistono due funzionalità di annotazione che supportano il riconoscimento ottico dei caratteri (OCR):

  • TEXT_DETECTION rileva ed estrae il testo da qualsiasi immagine. Ad esempio, una foto potrebbe contenere un cartello stradale o un cartello stradale. Il formato JSON include l'intera stringa estratta, nonché le singole parole e i relativi riquadri di delimitazione.

    Immagine di un segnale stradale

  • DOCUMENT_TEXT_DETECTION estrae anche il testo da un'immagine, ma la risposta è ottimizzata per testo ad alta densità e documenti. Il formato JSON include informazioni sulla pagina, sul blocco, sul paragrafo, sulla parola e sull'interruzione.

    Immagine densa con annotazioni

    Scopri di più su DOCUMENT_TEXT_DETECTION per l'estrazione della scrittura a mano libera e l'estrazione del testo dai file (PDF/TIFF).

Provalo

Se non hai mai utilizzato Google Cloud, crea un account per valutare le prestazioni di Cloud Vision in scenari reali. I nuovi clienti ricevono anche 300 $ di crediti gratuiti per l'esecuzione, il test e il deployment dei carichi di lavoro.

Prova Cloud Vision gratuitamente

Richieste di rilevamento testo

Configurare il progetto GCP e l'autenticazione

Rilevamento del testo in un'immagine locale

L'API Vision può eseguire il rilevamento delle caratteristiche in un file immagine locale inviando il contenuto del file immagine come una stringa codificata in base64 nel corpo della richiesta.

gcloud

Per eseguire il rilevamento del testo, utilizza il comando gcloud ml vision detect-text come mostrato nell'esempio seguente:

gcloud ml vision detect-text ./path/to/local/file.jpg

REST &CMD LINE

Prima di utilizzare uno qualsiasi dei dati della richiesta, effettua le seguenti sostituzioni:

  • BASE64_ENCODED_IMAGE: la rappresentazione base64 (stringa ASCII) dei dati immagine binari. Questa stringa deve essere simile alla seguente stringa:
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    Per ulteriori informazioni, visita l'argomento Codifica base64.

Metodo HTTP e URL:

POST https://vision.googleapis.com/v1/images:annotate

Corpo JSON richiesta:

{
  "requests": [
    {
      "image": {
        "content": "BASE64_ENCODED_IMAGE"
      },
      "features": [
        {
          "type": "TEXT_DETECTION"
        }
      ]
    }
  ]
}

Per inviare la richiesta, scegli una delle seguenti opzioni:

Curling

Salva il corpo della richiesta in un file denominato request.json ed esegui il seguente comando:

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

Salva il corpo della richiesta in un file denominato request.json ed esegui il seguente comando:

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Se la richiesta ha esito positivo, il server restituisce un codice di stato HTTP 200 OK e la risposta in formato JSON.

Una risposta TEXT_DETECTION include la frase rilevata, il relativo riquadro di delimitazione, le singole parole e i relativi riquadri di delimitazione.

Go

Prima di provare questo esempio, segui le istruzioni per la configurazione di Go nella guida rapida di Vision che utilizza le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vision Go.


// detectText gets text from the Vision API for an image at the given file path.
func detectText(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	annotations, err := client.DetectTexts(ctx, image, nil, 10)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No text found.")
	} else {
		fmt.Fprintln(w, "Text:")
		for _, annotation := range annotations {
			fmt.Fprintf(w, "%q\n", annotation.Description)
		}
	}

	return nil
}

Java

Prima di provare questo esempio, segui le istruzioni di configurazione di Java nella Guida rapida all'API Vision che utilizza le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Java dell'API Vision.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectText {
  public static void detectText() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "path/to/your/image/file.jpg";
    detectText(filePath);
  }

  // Detects text in the specified image.
  public static void detectText(String filePath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

    Image img = Image.newBuilder().setContent(imgBytes).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.TEXT_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        for (EntityAnnotation annotation : res.getTextAnnotationsList()) {
          System.out.format("Text: %s%n", annotation.getDescription());
          System.out.format("Position : %s%n", annotation.getBoundingPoly());
        }
      }
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni per la configurazione di Node.js nella guida rapida di Vision che utilizza le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vision Node.js.

const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = 'Local image file, e.g. /path/to/image.png';

// Performs text detection on the local file
const [result] = await client.textDetection(fileName);
const detections = result.textAnnotations;
console.log('Text:');
detections.forEach(text => console.log(text));

Python

Prima di provare questo esempio, segui le istruzioni di configurazione di Python nella guida rapida di Vision che utilizza le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vision Python.

def detect_text(path):
    """Detects text in the file."""
    from google.cloud import vision
    import io
    client = vision.ImageAnnotatorClient()

    with io.open(path, 'rb') as image_file:
        content = image_file.read()

    image = vision.Image(content=content)

    response = client.text_detection(image=image)
    texts = response.text_annotations
    print('Texts:')

    for text in texts:
        print('\n"{}"'.format(text.description))

        vertices = (['({},{})'.format(vertex.x, vertex.y)
                    for vertex in text.bounding_poly.vertices])

        print('bounds: {}'.format(','.join(vertices)))

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '
            'https://cloud.google.com/apis/design/errors'.format(
                response.error.message))

Lingue aggiuntive

C#: segui le istruzioni di configurazione di C# nella pagina delle librerie client e consulta la documentazione di riferimento di Vision per .NET.

PHP: segui le istruzioni per la configurazione di PHP nella pagina delle librerie client e consulta la documentazione di riferimento di Vision per PHP.

Ruby: segui le istruzioni di configurazione di Rubby nella pagina delle librerie client e consulta la documentazione di riferimento di Vision per Ruby.

Rilevamento del testo in un'immagine remota

Per comodità, l'API Vision può eseguire il rilevamento delle funzionalità direttamente in un file immagine situato in Google Cloud Storage o sul Web, senza dover inviare i contenuti del file immagine nel corpo della richiesta.

gcloud

Per eseguire il rilevamento del testo, utilizza il comando gcloud ml vision detect-text come mostrato nell'esempio seguente:

gcloud ml vision detect-text gs://cloud-samples-data/vision/ocr/sign.jpg

REST &CMD LINE

Prima di utilizzare uno qualsiasi dei dati della richiesta, effettua le seguenti sostituzioni:

  • CLOUD_STORAGE_IMAGE_URI: il percorso di un file immagine valido in un bucket Cloud Storage. Devi disporre almeno di privilegi di lettura per il file. Esempio:
    • gs://cloud-samples-data/vision/ocr/sign.jpg

Metodo HTTP e URL:

POST https://vision.googleapis.com/v1/images:annotate

Corpo JSON richiesta:

{
  "requests": [
    {
      "image": {
        "source": {
          "imageUri": "CLOUD_STORAGE_IMAGE_URI"
        }
       },
       "features": [
         {
           "type": "TEXT_DETECTION"
         }
       ]
    }
  ]
}

Per inviare la richiesta, scegli una delle seguenti opzioni:

Curling

Salva il corpo della richiesta in un file denominato request.json ed esegui il seguente comando:

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

Salva il corpo della richiesta in un file denominato request.json ed esegui il seguente comando:

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Se la richiesta ha esito positivo, il server restituisce un codice di stato HTTP 200 OK e la risposta in formato JSON.

Una risposta TEXT_DETECTION include la frase rilevata, il relativo riquadro di delimitazione, le singole parole e i relativi riquadri di delimitazione.

Go

Prima di provare questo esempio, segui le istruzioni per la configurazione di Go nella guida rapida di Vision che utilizza le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vision Go.


// detectText gets text from the Vision API for an image at the given file path.
func detectTextURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	annotations, err := client.DetectTexts(ctx, image, nil, 10)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No text found.")
	} else {
		fmt.Fprintln(w, "Text:")
		for _, annotation := range annotations {
			fmt.Fprintf(w, "%q\n", annotation.Description)
		}
	}

	return nil
}

Java

Prima di provare questo esempio, segui le istruzioni di configurazione di Java nella Guida rapida all'API Vision che utilizza le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Java dell'API Vision.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectTextGcs {

  public static void detectTextGcs() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
    detectTextGcs(filePath);
  }

  // Detects text in the specified remote image on Google Cloud Storage.
  public static void detectTextGcs(String gcsPath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
    Image img = Image.newBuilder().setSource(imgSource).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.TEXT_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        for (EntityAnnotation annotation : res.getTextAnnotationsList()) {
          System.out.format("Text: %s%n", annotation.getDescription());
          System.out.format("Position : %s%n", annotation.getBoundingPoly());
        }
      }
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni per la configurazione di Node.js nella guida rapida di Vision che utilizza le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vision Node.js.

// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

// Performs text detection on the gcs file
const [result] = await client.textDetection(`gs://${bucketName}/${fileName}`);
const detections = result.textAnnotations;
console.log('Text:');
detections.forEach(text => console.log(text));

Python

Prima di provare questo esempio, segui le istruzioni di configurazione di Python nella guida rapida di Vision che utilizza le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vision Python.

def detect_text_uri(uri):
    """Detects text in the file located in Google Cloud Storage or on the Web.
    """
    from google.cloud import vision
    client = vision.ImageAnnotatorClient()
    image = vision.Image()
    image.source.image_uri = uri

    response = client.text_detection(image=image)
    texts = response.text_annotations
    print('Texts:')

    for text in texts:
        print('\n"{}"'.format(text.description))

        vertices = (['({},{})'.format(vertex.x, vertex.y)
                    for vertex in text.bounding_poly.vertices])

        print('bounds: {}'.format(','.join(vertices)))

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '
            'https://cloud.google.com/apis/design/errors'.format(
                response.error.message))

Lingue aggiuntive

C#: segui le istruzioni di configurazione di C# nella pagina delle librerie client e consulta la documentazione di riferimento di Vision per .NET.

PHP: segui le istruzioni per la configurazione di PHP nella pagina delle librerie client e consulta la documentazione di riferimento di Vision per PHP.

Ruby: segui le istruzioni di configurazione di Rubby nella pagina delle librerie client e consulta la documentazione di riferimento di Vision per Ruby.

Specifica la lingua (facoltativo)

Entrambi i tipi di richieste OCR supportano uno o più languageHints che specificano la lingua di qualsiasi testo nell'immagine. Tuttavia, nella maggior parte dei casi un valore vuoto genera i risultati migliori, poiché abilita il rilevamento automatico della lingua. Per le lingue basate sull'alfabeto latino non è necessaria l'impostazione di languageHints. In rari casi, quando il linguaggio del testo nell'immagine è noto, l'impostazione di un suggerimento aiuta a ottenere risultati migliori (anche se può essere un ostacolo significativo se il suggerimento è sbagliato). Il rilevamento testo restituisce un errore se una o più lingue specificate non sono una delle lingue supportate.

Se scegli di fornire un suggerimento per la lingua, modifica il corpo della richiesta (file request.json) per fornire la stringa di una delle lingue supportate nel campo imageContext.languageHints, come mostrato di seguito:

{
  "requests": [
    {
      "image": {
        "source": {
          "imageUri": "IMAGE_URL"
        }
      },
      "features": [
        {
          "type": "DOCUMENT_TEXT_DETECTION"
        }
      ],
      "imageContext": {
        "languageHints": ["en-t-i0-handwrit"]
      }
    }
  ]
}

Supporto di più aree geografiche

Ora puoi specificare archiviazione dei dati a livello di continente ed elaborazione OCR. Le seguenti aree geografiche sono attualmente supportate:

  • us: solo paese degli Stati Uniti
  • eu: Unione europea

Località

Cloud Vision offre un certo controllo su dove vengono archiviate ed elaborate le risorse per il tuo progetto. In particolare, puoi configurare Cloud Vision per archiviare ed elaborare i tuoi dati solo nell'Unione europea.

Per impostazione predefinita, Cloud Vision archivia ed elabora le risorse in una località globale, il che significa che Cloud Vision non garantisce che le tue risorse rimarranno in una determinata località o area geografica. Se scegli la posizione nell'Unione europea, Google conserverà i tuoi dati e li elaborerà solo nell'Unione europea. Tu e i tuoi utenti potete accedere ai dati da qualsiasi luogo.

Impostazione della località tramite l'API

L'API Vision supporta un endpoint API globale (vision.googleapis.com) e due endpoint basati su area geografica: un endpoint dell'Unione europea (eu-vision.googleapis.com) e un endpoint degli Stati Uniti (us-vision.googleapis.com). Utilizza questi endpoint per l'elaborazione specifica per l'area geografica. Ad esempio, per archiviare ed elaborare i tuoi dati solo nell'Unione europea, usa l'URI eu-vision.googleapis.com al posto di vision.googleapis.com per le chiamate API REST:

  • https://eu-vision.googleapis.com/v1/images:annotate
  • https://eu-vision.googleapis.com/v1/images:asyncBatchAnnotate
  • https://eu-vision.googleapis.com/v1/files:annotate
  • https://eu-vision.googleapis.com/v1/files:asyncBatchAnnotate

Per archiviare ed elaborare i tuoi dati solo negli Stati Uniti, utilizza l'endpoint degli Stati Uniti (us-vision.googleapis.com) con i metodi elencati sopra.

Impostazione della località mediante le librerie client

Le librerie client dell'API Vision accedono all'endpoint API globale (vision.googleapis.com) per impostazione predefinita. Per archiviare ed elaborare i tuoi dati solo nell'Unione europea, devi impostare esplicitamente l'endpoint (eu-vision.googleapis.com). Gli esempi di codice riportati di seguito mostrano come configurare questa impostazione.

REST &CMD LINE

Prima di utilizzare uno qualsiasi dei dati della richiesta, effettua le seguenti sostituzioni:

  • CLOUD_STORAGE_IMAGE_URI: il percorso di un file immagine valido in un bucket Cloud Storage. Devi disporre almeno di privilegi di lettura per il file. Esempio:
    • gs://cloud-samples-data/vision/ocr/sign.jpg

Metodo HTTP e URL:

POST https://eu-vision.googleapis.com/v1/images:annotate

Corpo JSON richiesta:

{
  "requests": [
    {
      "image": {
        "source": {
          "imageUri": "CLOUD_STORAGE_IMAGE_URI"
        }
       },
       "features": [
         {
           "type": "TEXT_DETECTION"
         }
       ]
    }
  ]
}

Per inviare la richiesta, scegli una delle seguenti opzioni:

Curling

Salva il corpo della richiesta in un file denominato request.json ed esegui il seguente comando:

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://eu-vision.googleapis.com/v1/images:annotate"

PowerShell

Salva il corpo della richiesta in un file denominato request.json ed esegui il seguente comando:

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://eu-vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Se la richiesta ha esito positivo, il server restituisce un codice di stato HTTP 200 OK e la risposta in formato JSON.

Una risposta TEXT_DETECTION include la frase rilevata, il relativo riquadro di delimitazione, le singole parole e i relativi riquadri di delimitazione.

Go

Prima di provare questo esempio, segui le istruzioni per la configurazione di Go nella guida rapida di Vision che utilizza le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vision Go.

import (
	"context"
	"fmt"

	vision "cloud.google.com/go/vision/apiv1"
	"google.golang.org/api/option"
)

// setEndpoint changes your endpoint.
func setEndpoint(endpoint string) error {
	// endpoint := "eu-vision.googleapis.com:443"

	ctx := context.Background()
	client, err := vision.NewImageAnnotatorClient(ctx, option.WithEndpoint(endpoint))
	if err != nil {
		return fmt.Errorf("NewImageAnnotatorClient: %v", err)
	}
	defer client.Close()

	return nil
}

Java

Prima di provare questo esempio, segui le istruzioni di configurazione di Java nella Guida rapida all'API Vision che utilizza le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Java dell'API Vision.

ImageAnnotatorSettings settings =
    ImageAnnotatorSettings.newBuilder().setEndpoint("eu-vision.googleapis.com:443").build();

// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
ImageAnnotatorClient client = ImageAnnotatorClient.create(settings);

Node.js

Prima di provare questo esempio, segui le istruzioni per la configurazione di Node.js nella guida rapida di Vision che utilizza le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vision Node.js.

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');

async function setEndpoint() {
  // Specifies the location of the api endpoint
  const clientOptions = {apiEndpoint: 'eu-vision.googleapis.com'};

  // Creates a client
  const client = new vision.ImageAnnotatorClient(clientOptions);

  // Performs text detection on the image file
  const [result] = await client.textDetection('./resources/wakeupcat.jpg');
  const labels = result.textAnnotations;
  console.log('Text:');
  labels.forEach(label => console.log(label.description));
}
setEndpoint();

Python

Prima di provare questo esempio, segui le istruzioni di configurazione di Python nella guida rapida di Vision che utilizza le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vision Python.

from google.cloud import vision

client_options = {'api_endpoint': 'eu-vision.googleapis.com'}

client = vision.ImageAnnotatorClient(client_options=client_options)

Prova

Prova la funzionalità di rilevamento testo e documento testuale qui sotto. Puoi utilizzare l'immagine già specificata (gs://cloud-samples-data/vision/ocr/sign.jpg) facendo clic su Esegui. In alternativa, puoi specificare un'immagine specifica al suo posto.

Per provare il rilevamento di testo dei documenti, aggiorna il valore di type in DOCUMENT_TEXT_DETECTION.

Immagine di un segnale stradale

Corpo della richiesta:

{
  "requests": [
    {
      "features": [
        {
          "type": "TEXT_DETECTION"
        }
      ],
      "image": {
        "source": {
          "imageUri": "gs://cloud-samples-data/vision/ocr/sign.jpg"
        }
      }
    }
  ]
}