Tutorial sul rilevamento facciale


Obiettivi

In questo esempio, utilizzerai l'API Google Vision per rilevare i volti in un dell'immagine. Per verificare che i volti siano stati rilevati correttamente, userai questi dati per tracciare una casella attorno a ciascun volto.

Costi

In questo documento utilizzi i seguenti componenti fatturabili di Google Cloud:

  • Cloud Vision

Per generare una stima dei costi basata sull'utilizzo previsto, utilizza il Calcolatore prezzi. I nuovi utenti di Google Cloud potrebbero essere idonei per una prova gratuita.

Prima di iniziare

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the Google Cloud Vision API.

    Enable the API

  5. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  6. Make sure that billing is enabled for your Google Cloud project.

  7. Enable the Google Cloud Vision API.

    Enable the API

  8. Configura l'ambiente per l'utilizzo di Credenziali predefinite dell'applicazione.
  9. Configurare attività e strumenti specifici per la lingua:

    C#

    Java

    • Installa Java.
    • Riferimento API.
    • Scarica e installa il sistema di compilazione Apache Maven. Maven garantirà che la libreria client delle API di Google e le librerie client dell'API Vision siano installate al momento della compilazione del progetto, perché le abbiamo incluse nel file pom.xml.

      <dependency>
        <groupId>com.google.apis</groupId>
        <artifactId>google-api-services-vision</artifactId>
        <version>v1-rev20231219-2.0.0</version>
      </dependency>
      <dependency>
        <groupId>com.google.auth</groupId>
        <artifactId>google-auth-library-oauth2-http</artifactId>
      </dependency>
      <dependency>
        <groupId>com.google.guava</groupId>
        <artifactId>guava</artifactId>
      </dependency>
      <dependency>
        <groupId>com.google.http-client</groupId>
        <artifactId>google-http-client-jackson2</artifactId>
      </dependency>
      ...

    Node.js

    • Installa la libreria client Google
    • Installa node.js.
    • Riferimento API.
    • Installa npm e node-canvas. Il codice campione include un oggetto package.json per installare tutte le dipendenze utilizzando il comando: npm install. Nota che node-canvas ha che potresti dover installare, vedi l'installazione di nodi-canvas doc per ulteriori informazioni.

      {
        "name": "nodejs-docs-samples-vision",
        "private": true,
        "license": "Apache-2.0",
        "author": "Google LLC",
        "engines": {
          "node": ">=16.0.0"
        },
        "files": [
          "*.js"
        ],
        "scripts": {
          "test": "c8 mocha -p -j 2 system-test --timeout 600000"
        },
        "dependencies": {
          "@google-cloud/vision": "^4.0.0",
          "natural": "^8.0.0",
          "pureimage": "^0.3.17",
          "redis": "^4.6.5",
          "yargs": "^17.7.1"
        },
        "devDependencies": {
          "@google-cloud/storage": "^7.0.0",
          "@types/uuid": "^10.0.0",
          "@types/yargs": "^17.0.22",
          "c8": "^10.0.0",
          "chai": "^4.5.0",
          "mocha": "^10.2.0",
          "uuid": "^10.0.0"
        }
      }
      

    PHP

    Python

    Ruby

crea l'oggetto di servizio

Per accedere alle API di Google utilizzando gli SDK client ufficiali, devi creare un servizio in base al documento di rilevamento dell'API, che descrive l'API l'SDK. Dovrai recuperarlo dal servizio di rilevamento dell'API Vision utilizzando le tue credenziali:

Java

import com.google.api.client.googleapis.javanet.GoogleNetHttpTransport;
import com.google.api.client.json.JsonFactory;
import com.google.api.client.json.gson.GsonFactory;
import com.google.api.services.vision.v1.Vision;
import com.google.api.services.vision.v1.VisionScopes;
import com.google.api.services.vision.v1.model.AnnotateImageRequest;
import com.google.api.services.vision.v1.model.AnnotateImageResponse;
import com.google.api.services.vision.v1.model.BatchAnnotateImagesRequest;
import com.google.api.services.vision.v1.model.BatchAnnotateImagesResponse;
import com.google.api.services.vision.v1.model.FaceAnnotation;
import com.google.api.services.vision.v1.model.Feature;
import com.google.api.services.vision.v1.model.Image;
import com.google.api.services.vision.v1.model.Vertex;
import com.google.auth.http.HttpCredentialsAdapter;
import com.google.auth.oauth2.GoogleCredentials;
import com.google.common.collect.ImmutableList;
import java.awt.BasicStroke;
import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.Polygon;
import java.awt.image.BufferedImage;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.security.GeneralSecurityException;
import java.util.List;
import javax.imageio.ImageIO;
/** Connects to the Vision API using Application Default Credentials. */
public static Vision getVisionService() throws IOException, GeneralSecurityException {
  GoogleCredentials credential =
      GoogleCredentials.getApplicationDefault().createScoped(VisionScopes.all());
  JsonFactory jsonFactory = GsonFactory.getDefaultInstance();
  return new Vision.Builder(
          GoogleNetHttpTransport.newTrustedTransport(),
          jsonFactory,
          new HttpCredentialsAdapter(credential))
      .setApplicationName(APPLICATION_NAME)
      .build();
}

Node.js

// By default, the client will authenticate using the service account file
// specified by the GOOGLE_APPLICATION_CREDENTIALS environment variable and use
// the project specified by the GCLOUD_PROJECT environment variable. See
// https://googlecloudplatform.github.io/gcloud-node/#/docs/google-cloud/latest/guides/authentication
const vision = require('@google-cloud/vision');
// Creates a client
const client = new vision.ImageAnnotatorClient();

const fs = require('fs');

Python

from google.cloud import vision
from PIL import Image, ImageDraw
client = vision.ImageAnnotatorClient()

Invia una richiesta di rilevamento dei volti

Per creare una richiesta all'API Vision, consulta prima l'API documentazione. In questo caso, dovrai chiedere alla risorsa images di annotate la tua immagine. Una richiesta a questa API ha la forma di un oggetto con un elenco requests. Ogni elemento di questo elenco contiene due informazioni:

  • I dati immagine con codifica base64
  • Un elenco di funzionalità che vuoi annotare su quell'immagine.

Per questo esempio, dovrai semplicemente richiedere l'annotazione FACE_DETECTION su un'immagine e restituire la parte pertinente della risposta:

Java

/** Gets up to {@code maxResults} faces for an image stored at {@code path}. */
public List<FaceAnnotation> detectFaces(Path path, int maxResults) throws IOException {
  byte[] data = Files.readAllBytes(path);

  AnnotateImageRequest request =
      new AnnotateImageRequest()
          .setImage(new Image().encodeContent(data))
          .setFeatures(
              ImmutableList.of(
                  new Feature().setType("FACE_DETECTION").setMaxResults(maxResults)));
  Vision.Images.Annotate annotate =
      vision
          .images()
          .annotate(new BatchAnnotateImagesRequest().setRequests(ImmutableList.of(request)));
  // Due to a bug: requests to Vision API containing large images fail when GZipped.
  annotate.setDisableGZipContent(true);

  BatchAnnotateImagesResponse batchResponse = annotate.execute();
  assert batchResponse.getResponses().size() == 1;
  AnnotateImageResponse response = batchResponse.getResponses().get(0);
  if (response.getFaceAnnotations() == null) {
    throw new IOException(
        response.getError() != null
            ? response.getError().getMessage()
            : "Unknown error getting image annotations");
  }
  return response.getFaceAnnotations();
}

Node.js

async function detectFaces(inputFile) {
  // Make a call to the Vision API to detect the faces
  const request = {image: {source: {filename: inputFile}}};
  const results = await client.faceDetection(request);
  const faces = results[0].faceAnnotations;
  const numFaces = faces.length;
  console.log(`Found ${numFaces} face${numFaces === 1 ? '' : 's'}.`);
  return faces;
}

Python

def detect_face(face_file, max_results=4):
    """Uses the Vision API to detect faces in the given file.

    Args:
        face_file: A file-like object containing an image with faces.

    Returns:
        An array of Face objects with information about the picture.
    """
    client = vision.ImageAnnotatorClient()

    content = face_file.read()
    image = vision.Image(content=content)

    return client.face_detection(image=image, max_results=max_results).face_annotations

Elabora la risposta

Congratulazioni, hai rilevato i volti nell'immagine. La response alla nostra richiesta di annotazione dei volti include una serie di metadati relativi ai volti rilevati, che includono le coordinate di un poligono che circonda la faccia. A questo punto, però, si tratta solo di un elenco di numeri. Utilizziamoli per verificare che tu abbia effettivamente trovato i volti nell'immagine. Disegneremo i poligoni su una copia dell'immagine, utilizzando le coordinate restituite dall'API Vision:

Java

/** Reads image {@code inputPath} and writes {@code outputPath} with {@code faces} outlined. */
private static void writeWithFaces(Path inputPath, Path outputPath, List<FaceAnnotation> faces)
    throws IOException {
  BufferedImage img = ImageIO.read(inputPath.toFile());
  annotateWithFaces(img, faces);
  ImageIO.write(img, "jpg", outputPath.toFile());
}

/** Annotates an image {@code img} with a polygon around each face in {@code faces}. */
public static void annotateWithFaces(BufferedImage img, List<FaceAnnotation> faces) {
  for (FaceAnnotation face : faces) {
    annotateWithFace(img, face);
  }
}

/** Annotates an image {@code img} with a polygon defined by {@code face}. */
private static void annotateWithFace(BufferedImage img, FaceAnnotation face) {
  Graphics2D gfx = img.createGraphics();
  Polygon poly = new Polygon();
  for (Vertex vertex : face.getFdBoundingPoly().getVertices()) {
    poly.addPoint(vertex.getX(), vertex.getY());
  }
  gfx.setStroke(new BasicStroke(5));
  gfx.setColor(new Color(0x00ff00));
  gfx.draw(poly);
}

Node.js

Utilizziamo la libreria node-canvas per disegnare sulle immagini.

async function highlightFaces(inputFile, faces, outputFile, PImage) {
  // Open the original image
  const stream = fs.createReadStream(inputFile);
  let promise;
  if (inputFile.match(/\.jpg$/)) {
    promise = PImage.decodeJPEGFromStream(stream);
  } else if (inputFile.match(/\.png$/)) {
    promise = PImage.decodePNGFromStream(stream);
  } else {
    throw new Error(`Unknown filename extension ${inputFile}`);
  }
  const img = await promise;
  const context = img.getContext('2d');
  context.drawImage(img, 0, 0, img.width, img.height, 0, 0);

  // Now draw boxes around all the faces
  context.strokeStyle = 'rgba(0,255,0,0.8)';
  context.lineWidth = '5';

  faces.forEach(face => {
    context.beginPath();
    let origX = 0;
    let origY = 0;
    face.boundingPoly.vertices.forEach((bounds, i) => {
      if (i === 0) {
        origX = bounds.x;
        origY = bounds.y;
        context.moveTo(bounds.x, bounds.y);
      } else {
        context.lineTo(bounds.x, bounds.y);
      }
    });
    context.lineTo(origX, origY);
    context.stroke();
  });

  // Write the result to a file
  console.log(`Writing to file ${outputFile}`);
  const writeStream = fs.createWriteStream(outputFile);
  await PImage.encodePNGToStream(img, writeStream);
}

Python

def highlight_faces(image, faces, output_filename):
    """Draws a polygon around the faces, then saves to output_filename.

    Args:
      image: a file containing the image with the faces.
      faces: a list of faces found in the file. This should be in the format
          returned by the Vision API.
      output_filename: the name of the image file to be created, where the
          faces have polygons drawn around them.
    """
    im = Image.open(image)
    draw = ImageDraw.Draw(im)
    # Sepecify the font-family and the font-size
    for face in faces:
        box = [(vertex.x, vertex.y) for vertex in face.bounding_poly.vertices]
        draw.line(box + [box[0]], width=5, fill="#00ff00")
        # Place the confidence value/score of the detected faces above the
        # detection box in the output image
        draw.text(
            (
                (face.bounding_poly.vertices)[0].x,
                (face.bounding_poly.vertices)[0].y - 30,
            ),
            str(format(face.detection_confidence, ".3f")) + "%",
            fill="#FF0000",
        )
    im.save(output_filename)

Riassumendo

Java

/** Annotates an image using the Vision API. */
public static void main(String[] args) throws IOException, GeneralSecurityException {
  if (args.length != 2) {
    System.err.println("Usage:");
    System.err.printf(
        "\tjava %s inputImagePath outputImagePath\n", FaceDetectApp.class.getCanonicalName());
    System.exit(1);
  }
  Path inputPath = Paths.get(args[0]);
  Path outputPath = Paths.get(args[1]);
  if (!outputPath.toString().toLowerCase().endsWith(".jpg")) {
    System.err.println("outputImagePath must have the file extension 'jpg'.");
    System.exit(1);
  }

  FaceDetectApp app = new FaceDetectApp(getVisionService());
  List<FaceAnnotation> faces = app.detectFaces(inputPath, MAX_RESULTS);
  System.out.printf("Found %d face%s\n", faces.size(), faces.size() == 1 ? "" : "s");
  System.out.printf("Writing to file %s\n", outputPath);
  app.writeWithFaces(inputPath, outputPath, faces);
}
...

Per creare ed eseguire l'esempio, esegui i comandi seguenti dalla directory del codice campione:

mvn clean compile assembly:single
java -cp target/vision-face-detection-1.0-SNAPSHOT-jar-with-dependencies.jar \
    com.google.cloud.vision.samples.facedetect.FaceDetectApp \
    data/face.jpg \
    output.jpg

Node.js

async function main(inputFile, outputFile) {
  const PImage = require('pureimage');
  outputFile = outputFile || 'out.png';
  const faces = await detectFaces(inputFile);
  console.log('Highlighting...');
  await highlightFaces(inputFile, faces, outputFile, PImage);
  console.log('Finished!');
}

Per eseguire l'esempio, esegui il comando seguente dalla directory del codice campione:

node faceDetection resources/face.png

Python

def main(input_filename, output_filename, max_results):
    with open(input_filename, "rb") as image:
        faces = detect_face(image, max_results)
        print("Found {} face{}".format(len(faces), "" if len(faces) == 1 else "s"))

        print(f"Writing to file {output_filename}")
        # Reset the file pointer, so we can read the file again
        image.seek(0)
        highlight_faces(image, faces, output_filename)

Esegui la pulizia

Per evitare che al tuo account Google Cloud vengano addebitati costi relativi alle risorse utilizzate in questo tutorial, elimina il progetto che contiene le risorse oppure mantieni il progetto ed elimina le singole risorse.

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.