Detectar entidades e páginas da Web

A detecção da Web encontra referências de uma imagem na Internet.

Imagem do Carnaval
Crédito da imagem: Quinten de Graaf no Unsplash (páginas em inglês).

Categoria Respostas
Entidades da Web
  • entityId: /m/02p7_j8, entityId: 1.3225499, entityId: Carnival in Rio de Janeiro
  • entityId: /m/06gmr, entityId: 1.1684971, entityId: Rio de Janeiro
  • entityId: /m/04cx88, entityId: 1.05945, entityId: Brazilian Carnival
...
Imagens de correspondência completa
  • url: https://1000lugaresparair.files.wordpress.com/2017/11/quinten-de-graaf-278848.jpg
  • url: https://freewalkingtourrotterdam.com/wp-content/uploads/2017/07/quinten-de-graaf-278848.jpg
...
Imagens de correspondência parcial
  • url: https://www.linnanneito.fi/wp-content/uploads/sambakarnevaali-riossa.jpg
  • url: https://static.airhelp.com/wp-content/uploads/2019/02/26105557/two-women-in-carnival-costumes.jpg
...
Páginas com imagens correspondentes
  • url: https://travelnoire.com/best-carnival-celebrations-around-the-world/,
    pageTitle: Best \u003cb\u003eCarnival\u003c/b\u003e Celebrations Around The World - Travel Noire,
    fullMatchingImages: [{url: https://travelnoire.com/wp-content/uploads/2019/02/quinten-de-graaf-278848-unsplash.jpg}]
  • url: https://bespokebrazil.com/rio-carnival-2019/,
    pageTitle: Visit \u003cb\u003eRio Carnival 2019\u003c/b\u003e with the Brazil Specialists - Bespoke Brazil,
    partialMatchingImages: [{ url: https://bespoke-brazil-2018-bespokebrazil.netdna-ssl.com/wp-content/uploads/2019/01/Carnival-1.jpg}]
...
Imagens visualmente semelhantes
  • url: https://www.brazilbookers.com/_images/photos/rio-carnival-images/rio-carnival-2016-carnival-date.jpg
  • url: https://image.redbull.com/rbcom/010/2017-02-08/1331843859949_3/0100/0/1/watch-rio-carnival-2017-live-on-red-bull-tv.jpg
...
Rótulos de melhores sugestões rio carnival 2019 dancers

Solicitações de detecção da Web

Configurar o projeto e a autenticação do Google Cloud

Detectar entidades da Web com uma imagem local

Use a API Vision para detectar atributos em um arquivo de imagem local.

Para solicitações REST, envie o conteúdo do arquivo de imagem como uma string codificada em base64 no corpo da sua solicitação.

Para solicitações gcloud e da biblioteca de cliente, especifique o caminho para uma imagem local na sua solicitação.

REST

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • BASE64_ENCODED_IMAGE: a representação base64 (string ASCII) dos dados da imagem binária. Essa string precisa ser semelhante à seguinte:
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    Veja mais informações no tópico Codificação base64.
  • RESULTS_INT: (opcional) um valor inteiro de resultados a serem retornados. Se você omitir o campo "maxResults" e o valor dele, a API retornará o valor padrão de 10 resultados. Esse campo não se aplica aos seguintes tipos de recursos: TEXT_DETECTION, DOCUMENT_TEXT_DETECTION ou CROP_HINTS.
  • PROJECT_ID pelo ID do projeto no Google Cloud.

Método HTTP e URL:

POST https://vision.googleapis.com/v1/images:annotate

Corpo JSON da solicitação:

{
  "requests": [
    {
      "image": {
        "content": "BASE64_ENCODED_IMAGE"
      },
      "features": [
        {
          "maxResults": RESULTS_INT,
          "type": "WEB_DETECTION"
        },
      ]
    }
  ]
}

Para enviar a solicitação, escolha uma destas opções:

curl

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Quando a solicitação é bem-sucedida, o servidor retorna um código de status HTTP 200 OK e a resposta no formato JSON.

Resposta:

Go

Antes de testar esta amostra, siga as instruções de configuração do Go no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionGo.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


// detectWeb gets image properties from the Vision API for an image at the given file path.
func detectWeb(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	web, err := client.DetectWeb(ctx, image, nil)
	if err != nil {
		return err
	}

	fmt.Fprintln(w, "Web properties:")
	if len(web.FullMatchingImages) != 0 {
		fmt.Fprintln(w, "\tFull image matches:")
		for _, full := range web.FullMatchingImages {
			fmt.Fprintf(w, "\t\t%s\n", full.Url)
		}
	}
	if len(web.PagesWithMatchingImages) != 0 {
		fmt.Fprintln(w, "\tPages with this image:")
		for _, page := range web.PagesWithMatchingImages {
			fmt.Fprintf(w, "\t\t%s\n", page.Url)
		}
	}
	if len(web.WebEntities) != 0 {
		fmt.Fprintln(w, "\tEntities:")
		fmt.Fprintln(w, "\t\tEntity\t\tScore\tDescription")
		for _, entity := range web.WebEntities {
			fmt.Fprintf(w, "\t\t%-14s\t%-2.4f\t%s\n", entity.EntityId, entity.Score, entity.Description)
		}
	}
	if len(web.BestGuessLabels) != 0 {
		fmt.Fprintln(w, "\tBest guess labels:")
		for _, label := range web.BestGuessLabels {
			fmt.Fprintf(w, "\t\t%s\n", label.Label)
		}
	}

	return nil
}

Java

Antes de testar esta amostra, siga as instruções de configuração do Java no Guia de início rápido da API Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para Java.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Feature.Type;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.WebDetection;
import com.google.cloud.vision.v1.WebDetection.WebEntity;
import com.google.cloud.vision.v1.WebDetection.WebImage;
import com.google.cloud.vision.v1.WebDetection.WebLabel;
import com.google.cloud.vision.v1.WebDetection.WebPage;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectWebDetections {

  public static void detectWebDetections() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "path/to/your/image/file.jpg";
    detectWebDetections(filePath);
  }

  // Finds references to the specified image on the web.
  public static void detectWebDetections(String filePath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

    Image img = Image.newBuilder().setContent(imgBytes).build();
    Feature feat = Feature.newBuilder().setType(Type.WEB_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // Search the web for usages of the image. You could use these signals later
        // for user input moderation or linking external references.
        // For a full list of available annotations, see http://g.co/cloud/vision/docs
        WebDetection annotation = res.getWebDetection();
        System.out.println("Entity:Id:Score");
        System.out.println("===============");
        for (WebEntity entity : annotation.getWebEntitiesList()) {
          System.out.println(
              entity.getDescription() + " : " + entity.getEntityId() + " : " + entity.getScore());
        }
        for (WebLabel label : annotation.getBestGuessLabelsList()) {
          System.out.format("%nBest guess label: %s", label.getLabel());
        }
        System.out.println("%nPages with matching images: Score%n==");
        for (WebPage page : annotation.getPagesWithMatchingImagesList()) {
          System.out.println(page.getUrl() + " : " + page.getScore());
        }
        System.out.println("%nPages with partially matching images: Score%n==");
        for (WebImage image : annotation.getPartialMatchingImagesList()) {
          System.out.println(image.getUrl() + " : " + image.getScore());
        }
        System.out.println("%nPages with fully matching images: Score%n==");
        for (WebImage image : annotation.getFullMatchingImagesList()) {
          System.out.println(image.getUrl() + " : " + image.getScore());
        }
        System.out.println("%nPages with visually similar images: Score%n==");
        for (WebImage image : annotation.getVisuallySimilarImagesList()) {
          System.out.println(image.getUrl() + " : " + image.getScore());
        }
      }
    }
  }
}

Node.js

Antes de testar esta amostra, siga as instruções de configuração do Node.js no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionNode.js.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = 'Local image file, e.g. /path/to/image.png';

// Detect similar images on the web to a local file
const [result] = await client.webDetection(fileName);
const webDetection = result.webDetection;
if (webDetection.fullMatchingImages.length) {
  console.log(
    `Full matches found: ${webDetection.fullMatchingImages.length}`
  );
  webDetection.fullMatchingImages.forEach(image => {
    console.log(`  URL: ${image.url}`);
    console.log(`  Score: ${image.score}`);
  });
}

if (webDetection.partialMatchingImages.length) {
  console.log(
    `Partial matches found: ${webDetection.partialMatchingImages.length}`
  );
  webDetection.partialMatchingImages.forEach(image => {
    console.log(`  URL: ${image.url}`);
    console.log(`  Score: ${image.score}`);
  });
}

if (webDetection.webEntities.length) {
  console.log(`Web entities found: ${webDetection.webEntities.length}`);
  webDetection.webEntities.forEach(webEntity => {
    console.log(`  Description: ${webEntity.description}`);
    console.log(`  Score: ${webEntity.score}`);
  });
}

if (webDetection.bestGuessLabels.length) {
  console.log(
    `Best guess labels found: ${webDetection.bestGuessLabels.length}`
  );
  webDetection.bestGuessLabels.forEach(label => {
    console.log(`  Label: ${label.label}`);
  });
}

Python

Antes de testar esta amostra, siga as instruções de configuração do Python no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionPython.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

def detect_web(path):
    """Detects web annotations given an image."""
    from google.cloud import vision

    client = vision.ImageAnnotatorClient()

    with open(path, "rb") as image_file:
        content = image_file.read()

    image = vision.Image(content=content)

    response = client.web_detection(image=image)
    annotations = response.web_detection

    if annotations.best_guess_labels:
        for label in annotations.best_guess_labels:
            print(f"\nBest guess label: {label.label}")

    if annotations.pages_with_matching_images:
        print(
            "\n{} Pages with matching images found:".format(
                len(annotations.pages_with_matching_images)
            )
        )

        for page in annotations.pages_with_matching_images:
            print(f"\n\tPage url   : {page.url}")

            if page.full_matching_images:
                print(
                    "\t{} Full Matches found: ".format(len(page.full_matching_images))
                )

                for image in page.full_matching_images:
                    print(f"\t\tImage url  : {image.url}")

            if page.partial_matching_images:
                print(
                    "\t{} Partial Matches found: ".format(
                        len(page.partial_matching_images)
                    )
                )

                for image in page.partial_matching_images:
                    print(f"\t\tImage url  : {image.url}")

    if annotations.web_entities:
        print("\n{} Web entities found: ".format(len(annotations.web_entities)))

        for entity in annotations.web_entities:
            print(f"\n\tScore      : {entity.score}")
            print(f"\tDescription: {entity.description}")

    if annotations.visually_similar_images:
        print(
            "\n{} visually similar images found:\n".format(
                len(annotations.visually_similar_images)
            )
        )

        for image in annotations.visually_similar_images:
            print(f"\tImage url    : {image.url}")

    if response.error.message:
        raise Exception(
            "{}\nFor more info on error messages, check: "
            "https://cloud.google.com/apis/design/errors".format(response.error.message)
        )

Outras linguagens

C#: Siga as Instruções de configuração do C# na página das bibliotecas de cliente e acesse a Documentação de referência do Vision para .NET.

PHP: Siga as Instruções de configuração do PHP na página das bibliotecas de cliente e acesse a Documentação de referência do Vision para PHP.

Ruby Siga estas instruções:Instruções de configuração do Ruby na página das bibliotecas de cliente e, em seguida, visite oDocumentação de referência do Vision para Ruby.

Detectar entidades da Web com uma imagem remota

É possível usar a API Vision para realizar a detecção de recursos em um arquivo de imagem remoto localizado no Cloud Storage ou na Web. Para enviar uma solicitação de arquivo remoto, especifique o URL da Web do arquivo ou o URI do Cloud Storage no corpo da solicitação.

REST

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • CLOUD_STORAGE_IMAGE_URI: o caminho para um arquivo de imagem válido em um bucket do Cloud Storage. Você precisa ter, pelo menos, privilégios de leitura para o arquivo. Exemplo:
    • gs://cloud-samples-data/vision/web/carnaval.jpeg
  • RESULTS_INT: (opcional) um valor inteiro de resultados a serem retornados. Se você omitir o campo "maxResults" e o valor dele, a API retornará o valor padrão de 10 resultados. Esse campo não se aplica aos seguintes tipos de recursos: TEXT_DETECTION, DOCUMENT_TEXT_DETECTION ou CROP_HINTS.
  • PROJECT_ID pelo ID do projeto no Google Cloud.

Método HTTP e URL:

POST https://vision.googleapis.com/v1/images:annotate

Corpo JSON da solicitação:

{
  "requests": [
    {
      "image": {
        "source": {
          "gcsImageUri": "CLOUD_STORAGE_IMAGE_URI"
        }
      },
      "features": [
        {
          "maxResults": RESULTS_INT,
          "type": "WEB_DETECTION"
        },
      ]
    }
  ]
}

Para enviar a solicitação, escolha uma destas opções:

curl

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Quando a solicitação é bem-sucedida, o servidor retorna um código de status HTTP 200 OK e a resposta no formato JSON.

Resposta:

Go

Antes de testar esta amostra, siga as instruções de configuração do Go no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionGo.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


// detectWeb gets image properties from the Vision API for an image at the given file path.
func detectWebURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	web, err := client.DetectWeb(ctx, image, nil)
	if err != nil {
		return err
	}

	fmt.Fprintln(w, "Web properties:")
	if len(web.FullMatchingImages) != 0 {
		fmt.Fprintln(w, "\tFull image matches:")
		for _, full := range web.FullMatchingImages {
			fmt.Fprintf(w, "\t\t%s\n", full.Url)
		}
	}
	if len(web.PagesWithMatchingImages) != 0 {
		fmt.Fprintln(w, "\tPages with this image:")
		for _, page := range web.PagesWithMatchingImages {
			fmt.Fprintf(w, "\t\t%s\n", page.Url)
		}
	}
	if len(web.WebEntities) != 0 {
		fmt.Fprintln(w, "\tEntities:")
		fmt.Fprintln(w, "\t\tEntity\t\tScore\tDescription")
		for _, entity := range web.WebEntities {
			fmt.Fprintf(w, "\t\t%-14s\t%-2.4f\t%s\n", entity.EntityId, entity.Score, entity.Description)
		}
	}
	if len(web.BestGuessLabels) != 0 {
		fmt.Fprintln(w, "\tBest guess labels:")
		for _, label := range web.BestGuessLabels {
			fmt.Fprintf(w, "\t\t%s\n", label.Label)
		}
	}

	return nil
}

Java

Antes de testar esta amostra, siga as instruções de configuração do Java no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionJava.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import com.google.cloud.vision.v1.WebDetection;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectWebDetectionsGcs {

  public static void detectWebDetectionsGcs() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
    detectWebDetectionsGcs(filePath);
  }

  // Detects whether the remote image on Google Cloud Storage has features you would want to
  // moderate.
  public static void detectWebDetectionsGcs(String gcsPath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
    Image img = Image.newBuilder().setSource(imgSource).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.WEB_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // Search the web for usages of the image. You could use these signals later
        // for user input moderation or linking external references.
        // For a full list of available annotations, see http://g.co/cloud/vision/docs
        WebDetection annotation = res.getWebDetection();
        System.out.println("Entity:Id:Score");
        System.out.println("===============");
        for (WebDetection.WebEntity entity : annotation.getWebEntitiesList()) {
          System.out.println(
              entity.getDescription() + " : " + entity.getEntityId() + " : " + entity.getScore());
        }
        for (WebDetection.WebLabel label : annotation.getBestGuessLabelsList()) {
          System.out.format("%nBest guess label: %s", label.getLabel());
        }
        System.out.println("%nPages with matching images: Score%n==");
        for (WebDetection.WebPage page : annotation.getPagesWithMatchingImagesList()) {
          System.out.println(page.getUrl() + " : " + page.getScore());
        }
        System.out.println("%nPages with partially matching images: Score%n==");
        for (WebDetection.WebImage image : annotation.getPartialMatchingImagesList()) {
          System.out.println(image.getUrl() + " : " + image.getScore());
        }
        System.out.println("%nPages with fully matching images: Score%n==");
        for (WebDetection.WebImage image : annotation.getFullMatchingImagesList()) {
          System.out.println(image.getUrl() + " : " + image.getScore());
        }
        System.out.println("%nPages with visually similar images: Score%n==");
        for (WebDetection.WebImage image : annotation.getVisuallySimilarImagesList()) {
          System.out.println(image.getUrl() + " : " + image.getScore());
        }
      }
    }
  }
}

Node.js

Antes de testar esta amostra, siga as instruções de configuração do Node.js no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionNode.js.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

// Detect similar images on the web to a remote file
const [result] = await client.webDetection(`gs://${bucketName}/${fileName}`);
const webDetection = result.webDetection;
if (webDetection.fullMatchingImages.length) {
  console.log(
    `Full matches found: ${webDetection.fullMatchingImages.length}`
  );
  webDetection.fullMatchingImages.forEach(image => {
    console.log(`  URL: ${image.url}`);
    console.log(`  Score: ${image.score}`);
  });
}

if (webDetection.partialMatchingImages.length) {
  console.log(
    `Partial matches found: ${webDetection.partialMatchingImages.length}`
  );
  webDetection.partialMatchingImages.forEach(image => {
    console.log(`  URL: ${image.url}`);
    console.log(`  Score: ${image.score}`);
  });
}

if (webDetection.webEntities.length) {
  console.log(`Web entities found: ${webDetection.webEntities.length}`);
  webDetection.webEntities.forEach(webEntity => {
    console.log(`  Description: ${webEntity.description}`);
    console.log(`  Score: ${webEntity.score}`);
  });
}

if (webDetection.bestGuessLabels.length) {
  console.log(
    `Best guess labels found: ${webDetection.bestGuessLabels.length}`
  );
  webDetection.bestGuessLabels.forEach(label => {
    console.log(`  Label: ${label.label}`);
  });
}

Python

Antes de testar esta amostra, siga as instruções de configuração do Python no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionPython.

Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

def detect_web_uri(uri):
    """Detects web annotations in the file located in Google Cloud Storage."""
    from google.cloud import vision

    client = vision.ImageAnnotatorClient()
    image = vision.Image()
    image.source.image_uri = uri

    response = client.web_detection(image=image)
    annotations = response.web_detection

    if annotations.best_guess_labels:
        for label in annotations.best_guess_labels:
            print(f"\nBest guess label: {label.label}")

    if annotations.pages_with_matching_images:
        print(
            "\n{} Pages with matching images found:".format(
                len(annotations.pages_with_matching_images)
            )
        )

        for page in annotations.pages_with_matching_images:
            print(f"\n\tPage url   : {page.url}")

            if page.full_matching_images:
                print(
                    "\t{} Full Matches found: ".format(len(page.full_matching_images))
                )

                for image in page.full_matching_images:
                    print(f"\t\tImage url  : {image.url}")

            if page.partial_matching_images:
                print(
                    "\t{} Partial Matches found: ".format(
                        len(page.partial_matching_images)
                    )
                )

                for image in page.partial_matching_images:
                    print(f"\t\tImage url  : {image.url}")

    if annotations.web_entities:
        print("\n{} Web entities found: ".format(len(annotations.web_entities)))

        for entity in annotations.web_entities:
            print(f"\n\tScore      : {entity.score}")
            print(f"\tDescription: {entity.description}")

    if annotations.visually_similar_images:
        print(
            "\n{} visually similar images found:\n".format(
                len(annotations.visually_similar_images)
            )
        )

        for image in annotations.visually_similar_images:
            print(f"\tImage url    : {image.url}")

    if response.error.message:
        raise Exception(
            "{}\nFor more info on error messages, check: "
            "https://cloud.google.com/apis/design/errors".format(response.error.message)
        )

gcloud

Para realizar a detecção da Web, use o comando gcloud ml vision detect-web, como mostrado no exemplo a seguir:

gcloud ml vision detect-web gs://cloud-samples-data/vision/web/carnaval.jpeg

Outras linguagens

C#: Siga as Instruções de configuração do C# na página das bibliotecas de cliente e acesse a Documentação de referência do Vision para .NET.

PHP: Siga as Instruções de configuração do PHP na página das bibliotecas de cliente e acesse a Documentação de referência do Vision para PHP.

Ruby Siga estas instruções:Instruções de configuração do Ruby na página das bibliotecas de cliente e, em seguida, visite oDocumentação de referência do Vision para Ruby.

Teste agora

Teste a detecção de entidades da Web abaixo. É possível usar a imagem já especificada (gs://cloud-samples-data/vision/web/carnaval.jpeg) ou determinar sua própria imagem. Envie a solicitação selecionando Executar.

Imagem do Carnaval
Crédito da imagem: Quinten de Graaf no Unsplash (páginas em inglês).

Corpo da solicitação:

{
  "requests": [
    {
      "features": [
        {
          "type": "WEB_DETECTION"
        }
      ],
      "image": {
        "source": {
          "gcsImageUri": "gs://cloud-samples-data/vision/web/carnaval.jpeg"
        }
      }
    }
  ]
}