检测剪裁提示

剪裁提示会确定图片的建议剪裁区域顶点。

剪裁前的图片
图片来源: Unsplash 用户 Yasmin Dangor(显示原始图片和剪裁后的图片)。

已应用剪裁提示(比例为 2:1)

剪裁后的图片

剪裁提示检测请求

设置您的 Google Cloud 项目和身份验证

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the Vision API.

    Enable the API

  5. Install the Google Cloud CLI.
  6. To initialize the gcloud CLI, run the following command:

    gcloud init

检测本地图片中的剪裁提示

您可以使用 Vision API 对本地图片文件执行特征检测。

对于 REST 请求,请将图片文件的内容作为 base64 编码的字符串在请求正文中发送。

对于 gcloud 和客户端库请求,请在请求中指定本地图片的路径。

在使用任何请求数据之前,请先进行以下替换:

  • BASE64_ENCODED_IMAGE:二进制图片数据的 base64 表示(ASCII 字符串)。此字符串应类似于以下字符串:
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    如需了解详情,请参阅 base64 编码主题。
  • PROJECT_ID:您的 Google Cloud 项目 ID。

特定于字段的注意事项

  • cropHintsParams.aspectRatios - 一个浮点数,对应于图片的指定比例(宽高比)。您最多可以提供 16 个剪裁比例。

HTTP 方法和网址:

POST https://vision.googleapis.com/v1/images:annotate

请求 JSON 正文:

{
  "requests": [
    {
      "image": {
        "content": "BASE64_ENCODED_IMAGE"
      },
      "features": [
        {
          "type": "CROP_HINTS"
        }
      ],
      "imageContext": {
        "cropHintsParams": {
          "aspectRatios": [
             2.0
          ]
        }
      }
    }
  ]
}

如需发送请求,请选择以下方式之一:

将请求正文保存在名为 request.json 的文件中,然后执行以下命令:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

将请求正文保存在名为 request.json 的文件中,然后执行以下命令:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

如果请求成功,服务器将返回一个 200 OK HTTP 状态代码以及 JSON 格式的响应。

响应

{
  "responses": [
    {
      "cropHintsAnnotation": {
        "cropHints": [
          {
            "boundingPoly": {
              "vertices": [
                {
                  "y": 520
                },
                {
                  "x": 2369,
                  "y": 520
                },
                {
                  "x": 2369,
                  "y": 1729
                },
                {
                  "y": 1729
                }
              ]
            },
            "confidence": 0.79999995,
            "importanceFraction": 0.66999996
          }
        ]
      }
    }
  ]
}

试用此示例之前,请按照《Vision 快速入门:使用客户端库》中的 Go 设置说明进行操作。 如需了解详情,请参阅 Vision Go API 参考文档

如需向 Vision 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证


// detectCropHints gets suggested croppings the Vision API for an image at the given file path.
func detectCropHints(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	res, err := client.CropHints(ctx, image, nil)
	if err != nil {
		return err
	}

	fmt.Fprintln(w, "Crop hints:")
	for _, hint := range res.CropHints {
		for _, v := range hint.BoundingPoly.Vertices {
			fmt.Fprintf(w, "(%d,%d)\n", v.X, v.Y)
		}
	}

	return nil
}

在试用此示例之前,请按照Vision API 快速入门:使用客户端库中的 Java 设置说明进行操作。如需了解详情,请参阅 Vision API Java 参考文档


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.CropHint;
import com.google.cloud.vision.v1.CropHintsAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectCropHints {
  public static void detectCropHints() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "path/to/your/image/file.jpg";
    detectCropHints(filePath);
  }

  // Suggests a region to crop to for a local file.
  public static void detectCropHints(String filePath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

    Image img = Image.newBuilder().setContent(imgBytes).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.CROP_HINTS).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        CropHintsAnnotation annotation = res.getCropHintsAnnotation();
        for (CropHint hint : annotation.getCropHintsList()) {
          System.out.println(hint.getBoundingPoly());
        }
      }
    }
  }
}

试用此示例之前,请按照《Vision 快速入门:使用客户端库》中的 Node.js 设置说明进行操作。 如需了解详情,请参阅 Vision Node.js API 参考文档

如需向 Vision 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证


// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = 'Local image file, e.g. /path/to/image.png';

// Find crop hints for the local file
const [result] = await client.cropHints(fileName);
const cropHints = result.cropHintsAnnotation;
cropHints.cropHints.forEach((hintBounds, hintIdx) => {
  console.log(`Crop Hint ${hintIdx}:`);
  hintBounds.boundingPoly.vertices.forEach((bound, boundIdx) => {
    console.log(`  Bound ${boundIdx}: (${bound.x}, ${bound.y})`);
  });
});

试用此示例之前,请按照《Vision 快速入门:使用客户端库》中的 Python 设置说明进行操作。 如需了解详情,请参阅 Vision Python API 参考文档

如需向 Vision 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

def detect_crop_hints(path):
    """Detects crop hints in an image."""
    from google.cloud import vision

    client = vision.ImageAnnotatorClient()

    with open(path, "rb") as image_file:
        content = image_file.read()
    image = vision.Image(content=content)

    crop_hints_params = vision.CropHintsParams(aspect_ratios=[1.77])
    image_context = vision.ImageContext(crop_hints_params=crop_hints_params)

    response = client.crop_hints(image=image, image_context=image_context)
    hints = response.crop_hints_annotation.crop_hints

    for n, hint in enumerate(hints):
        print(f"\nCrop Hint: {n}")

        vertices = [
            f"({vertex.x},{vertex.y})" for vertex in hint.bounding_poly.vertices
        ]

        print("bounds: {}".format(",".join(vertices)))

    if response.error.message:
        raise Exception(
            "{}\nFor more info on error messages, check: "
            "https://cloud.google.com/apis/design/errors".format(response.error.message)
        )

C#: 请按照客户端库页面上的 C# 设置说明操作,然后访问 .NET 版 Vision 参考文档。

PHP: 请按照客户端库页面上的 PHP 设置说明操作,然后访问 PHP 版 Vision 参考文档。

Ruby 版: 请按照客户端库页面上的 Ruby 设置说明操作,然后访问 Ruby 版 Vision 参考文档。

检测远程图片中的剪裁提示

您可以使用 Vision API 对位于 Cloud Storage 或网络中的远程图片文件执行特征检测。如需发送远程文件请求,请在请求正文中指定文件的网址或 Cloud Storage URI。

在使用任何请求数据之前,请先进行以下替换:

  • CLOUD_STORAGE_IMAGE_URI:Cloud Storage 存储桶中有效图片文件的路径。您必须至少拥有该文件的读取权限。 示例:
    • gs://cloud-samples-data/vision/crop_hints/bubble.jpeg
  • PROJECT_ID:您的 Google Cloud 项目 ID。

特定于字段的注意事项

  • cropHintsParams.aspectRatios - 一个浮点数,对应于图片的指定比例(宽高比)。您最多可以提供 16 个剪裁比例。

HTTP 方法和网址:

POST https://vision.googleapis.com/v1/images:annotate

请求 JSON 正文:

{
  "requests": [
    {
      "image": {
        "source": {
          "gcsImageUri": "CLOUD_STORAGE_IMAGE_URI"
        }
      },
      "features": [
        {
          "type": "CROP_HINTS"
        }
      ],
      "imageContext": {
        "cropHintsParams": {
          "aspectRatios": [
             2.0
          ]
        }
      }
    }
  ]
}

如需发送请求,请选择以下方式之一:

将请求正文保存在名为 request.json 的文件中,然后执行以下命令:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

将请求正文保存在名为 request.json 的文件中,然后执行以下命令:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

如果请求成功,服务器将返回一个 200 OK HTTP 状态代码以及 JSON 格式的响应。

响应

{
  "responses": [
    {
      "cropHintsAnnotation": {
        "cropHints": [
          {
            "boundingPoly": {
              "vertices": [
                {
                  "y": 520
                },
                {
                  "x": 2369,
                  "y": 520
                },
                {
                  "x": 2369,
                  "y": 1729
                },
                {
                  "y": 1729
                }
              ]
            },
            "confidence": 0.79999995,
            "importanceFraction": 0.66999996
          }
        ]
      }
    }
  ]
}

试用此示例之前,请按照《Vision 快速入门:使用客户端库》中的 Java 设置说明进行操作。 如需了解详情,请参阅 Vision Java API 参考文档

如需向 Vision 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.CropHint;
import com.google.cloud.vision.v1.CropHintsAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectCropHintsGcs {

  public static void detectCropHintsGcs() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
    detectCropHintsGcs(filePath);
  }

  // Suggests a region to crop to for a remote file on Google Cloud Storage.
  public static void detectCropHintsGcs(String gcsPath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
    Image img = Image.newBuilder().setSource(imgSource).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.CROP_HINTS).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        CropHintsAnnotation annotation = res.getCropHintsAnnotation();
        for (CropHint hint : annotation.getCropHintsList()) {
          System.out.println(hint.getBoundingPoly());
        }
      }
    }
  }
}

试用此示例之前,请按照《Vision 快速入门:使用客户端库》中的 Go 设置说明进行操作。 如需了解详情,请参阅 Vision Go API 参考文档

如需向 Vision 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证


// detectCropHints gets suggested croppings the Vision API for an image at the given file path.
func detectCropHintsURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	res, err := client.CropHints(ctx, image, nil)
	if err != nil {
		return err
	}

	fmt.Fprintln(w, "Crop hints:")
	for _, hint := range res.CropHints {
		for _, v := range hint.BoundingPoly.Vertices {
			fmt.Fprintf(w, "(%d,%d)\n", v.X, v.Y)
		}
	}

	return nil
}

试用此示例之前,请按照《Vision 快速入门:使用客户端库》中的 Node.js 设置说明进行操作。 如需了解详情,请参阅 Vision Node.js API 参考文档

如需向 Vision 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证


// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

// Find crop hints for the remote file
const [result] = await client.cropHints(`gs://${bucketName}/${fileName}`);
const cropHints = result.cropHintsAnnotation;
cropHints.cropHints.forEach((hintBounds, hintIdx) => {
  console.log(`Crop Hint ${hintIdx}:`);
  hintBounds.boundingPoly.vertices.forEach((bound, boundIdx) => {
    console.log(`  Bound ${boundIdx}: (${bound.x}, ${bound.y})`);
  });
});

试用此示例之前,请按照《Vision 快速入门:使用客户端库》中的 Python 设置说明进行操作。 如需了解详情,请参阅 Vision Python API 参考文档

如需向 Vision 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

def detect_crop_hints_uri(uri):
    """Detects crop hints in the file located in Google Cloud Storage."""
    from google.cloud import vision

    client = vision.ImageAnnotatorClient()
    image = vision.Image()
    image.source.image_uri = uri

    crop_hints_params = vision.CropHintsParams(aspect_ratios=[1.77])
    image_context = vision.ImageContext(crop_hints_params=crop_hints_params)

    response = client.crop_hints(image=image, image_context=image_context)
    hints = response.crop_hints_annotation.crop_hints

    for n, hint in enumerate(hints):
        print(f"\nCrop Hint: {n}")

        vertices = [
            f"({vertex.x},{vertex.y})" for vertex in hint.bounding_poly.vertices
        ]

        print("bounds: {}".format(",".join(vertices)))

    if response.error.message:
        raise Exception(
            "{}\nFor more info on error messages, check: "
            "https://cloud.google.com/apis/design/errors".format(response.error.message)
        )

如需执行文本检测,请使用 gcloud ml vision suggest-crop 命令,如以下示例所示:

gcloud ml vision suggest-crop gs://cloud-samples-data/vision/crop_hints/bubble.jpeg

C#: 请按照客户端库页面上的 C# 设置说明操作,然后访问 .NET 版 Vision 参考文档。

PHP: 请按照客户端库页面上的 PHP 设置说明操作,然后访问 PHP 版 Vision 参考文档。

Ruby 版: 请按照客户端库页面上的 Ruby 设置说明操作,然后访问 Ruby 版 Vision 参考文档。

试用

请尝试以下剪裁提示检测。您可以使用已指定的图片 (gs://cloud-samples-data/vision/crop_hints/bubble.jpeg) 或指定您自己的图片。选择执行来发送请求。

剪裁前的图片
图片来源:Unsplash 用户 Yasmin Dangor

请求正文:

{
  "requests": [
    {
      "image": {
        "source": {
          "gcsImageUri": "gs://cloud-samples-data/vision/crop_hints/bubble.jpeg"
        }
      },
      "features": [
        {
          "type": "CROP_HINTS"
        }
      ],
      "imageContext": {
        "cropHintsParams": {
          "aspectRatios": [
            2
          ]
        }
      }
    }
  ]
}