자르기 힌트 감지

자르기 힌트는 이미지에서 잘라낼 영역의 꼭지점을 제안하는 기능입니다.

자르기 전 이미지
이미지 크레딧: 야스민 당고, Unsplash(원본 및 잘린 이미지 표시)

자르기 힌트 적용됨(2:1 비율):

자른 후 이미지

자르기 힌트 감지 요청

GCP 프로젝트 및 인증 설정

로컬 이미지에서 자르기 힌트 감지

Vision API는 이미지 파일의 콘텐츠를 요청 본문에 base64로 인코딩된 문자열로 전송하여 로컬 이미지 파일에서 기능 감지를 수행할 수 있습니다.

REST 및 명령줄

아래의 요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • base64-encoded-image: 바이너리 이미지 데이터의 base64 표현(ASCII 문자열)입니다. 이 문자열은 다음 문자열과 비슷해야 합니다.
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    자세한 내용은 base64 인코딩 주제를 참조하세요.

필드별 고려사항:

  • cropHintsParams.aspectRatios - 이미지에 지정된 비율(너비:높이)에 해당하는 부동 소수점 수입니다. 최대 16개의 자르기 비율을 제공할 수 있습니다.

HTTP 메서드 및 URL:

POST https://vision.googleapis.com/v1/images:annotate

JSON 요청 본문:

{
  "requests": [
    {
      "image": {
        "content": "base64-encoded-image"
      },
      "features": [
        {
          "type": "CROP_HINTS"
        }
      ],
      "imageContext": {
        "cropHintsParams": {
          "aspectRatios": [
             2.0
          ]
        }
      }
    }
  ]
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
https://vision.googleapis.com/v1/images:annotate

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

요청이 성공하면 서버가 200 OK HTTP 상태 코드와 응답을 JSON 형식으로 반환합니다.

응답:



    {
  "responses": [
    {
      "cropHintsAnnotation": {
        "cropHints": [
          {
            "boundingPoly": {
              "vertices": [
                {
                  "y": 520
                },
                {
                  "x": 2369,
                  "y": 520
                },
                {
                  "x": 2369,
                  "y": 1729
                },
                {
                  "y": 1729
                }
              ]
            },
            "confidence": 0.79999995,
            "importanceFraction": 0.66999996
          }
        ]
      }
    }
  ]
}

Go

이 샘플을 시도하기 전에 클라이언트 라이브러리를 사용하는 Vision 빠른 시작의 Go 설정 안내를 따르세요. 자세한 내용은 Vision Go API 참조 문서를 참조하세요.


// detectCropHints gets suggested croppings the Vision API for an image at the given file path.
func detectCropHints(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	res, err := client.CropHints(ctx, image, nil)
	if err != nil {
		return err
	}

	fmt.Fprintln(w, "Crop hints:")
	for _, hint := range res.CropHints {
		for _, v := range hint.BoundingPoly.Vertices {
			fmt.Fprintf(w, "(%d,%d)\n", v.X, v.Y)
		}
	}

	return nil
}

자바

이 샘플을 시도하기 전에 Vision API 빠른 시작: 클라이언트 라이브러리 사용의 자바 설정 안내를 따르세요. 자세한 내용은 Vision API 자바 API 참조 문서를 확인하세요.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.CropHint;
import com.google.cloud.vision.v1.CropHintsAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectCropHints {
  public static void detectCropHints() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "path/to/your/image/file.jpg";
    detectCropHints(filePath);
  }

  // Suggests a region to crop to for a local file.
  public static void detectCropHints(String filePath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

    Image img = Image.newBuilder().setContent(imgBytes).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.CROP_HINTS).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        CropHintsAnnotation annotation = res.getCropHintsAnnotation();
        for (CropHint hint : annotation.getCropHintsList()) {
          System.out.println(hint.getBoundingPoly());
        }
      }
    }
  }
}

Node.js

이 샘플을 시도해 보기 전에 클라이언트 라이브러리를 사용하는 Vision 빠른 시작의 Node.js 설정 안내를 따르세요. 자세한 내용은 Vision Node.js API 참조 문서를 참조하세요.


// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = 'Local image file, e.g. /path/to/image.png';

// Find crop hints for the local file
const [result] = await client.cropHints(fileName);
const cropHints = result.cropHintsAnnotation;
cropHints.cropHints.forEach((hintBounds, hintIdx) => {
  console.log(`Crop Hint ${hintIdx}:`);
  hintBounds.boundingPoly.vertices.forEach((bound, boundIdx) => {
    console.log(`  Bound ${boundIdx}: (${bound.x}, ${bound.y})`);
  });
});

Python

이 샘플을 시도해 보기 전에 클라이언트 라이브러리를 사용하는 Vision 빠른 시작의 Python 설정 안내를 따르세요. 자세한 내용은 Vision Python API 참조 문서를 확인하세요.

def detect_crop_hints(path):
    """Detects crop hints in an image."""
    from google.cloud import vision
    import io
    client = vision.ImageAnnotatorClient()

    with io.open(path, 'rb') as image_file:
        content = image_file.read()
    image = vision.Image(content=content)

    crop_hints_params = vision.CropHintsParams(aspect_ratios=[1.77])
    image_context = vision.ImageContext(
        crop_hints_params=crop_hints_params)

    response = client.crop_hints(image=image, image_context=image_context)
    hints = response.crop_hints_annotation.crop_hints

    for n, hint in enumerate(hints):
        print('\nCrop Hint: {}'.format(n))

        vertices = (['({},{})'.format(vertex.x, vertex.y)
                    for vertex in hint.bounding_poly.vertices])

        print('bounds: {}'.format(','.join(vertices)))

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '
            'https://cloud.google.com/apis/design/errors'.format(
                response.error.message))

원격 이미지에서 자르기 힌트 감지

편의를 위해 Vision API는 요청 본문 안에 이미지 파일의 콘텐츠를 보내지 않고도 Google Cloud Storage 또는 웹에 위치한 이미지 파일에서 바로 특징 감지를 수행할 수 있습니다.

REST 및 명령줄

아래의 요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • cloud-storage-image-uri: Cloud Storage 버킷에 있는 유효한 이미지 파일의 경로입니다. 적어도 파일에 대한 읽기 권한이 있어야 합니다. 예를 들면 다음과 같습니다.
    • gs://cloud-samples-data/vision/crop_hints/bubble.jpeg

필드별 고려사항:

  • cropHintsParams.aspectRatios - 이미지에 지정된 비율(너비:높이)에 해당하는 부동 소수점 수입니다. 최대 16개의 자르기 비율을 제공할 수 있습니다.

HTTP 메서드 및 URL:

POST https://vision.googleapis.com/v1/images:annotate

JSON 요청 본문:

{
  "requests": [
    {
      "image": {
        "source": {
          "gcsImageUri": "cloud-storage-image-uri"
        }
      },
      "features": [
        {
          "type": "CROP_HINTS"
        }
      ],
      "imageContext": {
        "cropHintsParams": {
          "aspectRatios": [
             2.0
          ]
        }
      }
    }
  ]
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
https://vision.googleapis.com/v1/images:annotate

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

요청이 성공하면 서버가 200 OK HTTP 상태 코드와 응답을 JSON 형식으로 반환합니다.

응답:



    {
  "responses": [
    {
      "cropHintsAnnotation": {
        "cropHints": [
          {
            "boundingPoly": {
              "vertices": [
                {
                  "y": 520
                },
                {
                  "x": 2369,
                  "y": 520
                },
                {
                  "x": 2369,
                  "y": 1729
                },
                {
                  "y": 1729
                }
              ]
            },
            "confidence": 0.79999995,
            "importanceFraction": 0.66999996
          }
        ]
      }
    }
  ]
}

자바

이 샘플을 시도해 보기 전에 클라이언트 라이브러리를 사용하는 Vision 빠른 시작의 자바 설정 안내를 따르세요. 자세한 내용은 Vision 자바 API 참조 문서를 확인하세요.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.CropHint;
import com.google.cloud.vision.v1.CropHintsAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectCropHintsGcs {

  public static void detectCropHintsGcs() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
    detectCropHintsGcs(filePath);
  }

  // Suggests a region to crop to for a remote file on Google Cloud Storage.
  public static void detectCropHintsGcs(String gcsPath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
    Image img = Image.newBuilder().setSource(imgSource).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.CROP_HINTS).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        CropHintsAnnotation annotation = res.getCropHintsAnnotation();
        for (CropHint hint : annotation.getCropHintsList()) {
          System.out.println(hint.getBoundingPoly());
        }
      }
    }
  }
}

Go

이 샘플을 시도하기 전에 클라이언트 라이브러리를 사용하는 Vision 빠른 시작의 Go 설정 안내를 따르세요. 자세한 내용은 Vision Go API 참조 문서를 참조하세요.


// detectCropHints gets suggested croppings the Vision API for an image at the given file path.
func detectCropHintsURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	res, err := client.CropHints(ctx, image, nil)
	if err != nil {
		return err
	}

	fmt.Fprintln(w, "Crop hints:")
	for _, hint := range res.CropHints {
		for _, v := range hint.BoundingPoly.Vertices {
			fmt.Fprintf(w, "(%d,%d)\n", v.X, v.Y)
		}
	}

	return nil
}

Node.js

이 샘플을 시도해 보기 전에 클라이언트 라이브러리를 사용하는 Vision 빠른 시작의 Node.js 설정 안내를 따르세요. 자세한 내용은 Vision Node.js API 참조 문서를 참조하세요.


// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

// Find crop hints for the remote file
const [result] = await client.cropHints(`gs://${bucketName}/${fileName}`);
const cropHints = result.cropHintsAnnotation;
cropHints.cropHints.forEach((hintBounds, hintIdx) => {
  console.log(`Crop Hint ${hintIdx}:`);
  hintBounds.boundingPoly.vertices.forEach((bound, boundIdx) => {
    console.log(`  Bound ${boundIdx}: (${bound.x}, ${bound.y})`);
  });
});

Python

이 샘플을 시도해 보기 전에 클라이언트 라이브러리를 사용하는 Vision 빠른 시작의 Python 설정 안내를 따르세요. 자세한 내용은 Vision Python API 참조 문서를 확인하세요.

def detect_crop_hints_uri(uri):
    """Detects crop hints in the file located in Google Cloud Storage."""
    from google.cloud import vision
    client = vision.ImageAnnotatorClient()
    image = vision.Image()
    image.source.image_uri = uri

    crop_hints_params = vision.CropHintsParams(aspect_ratios=[1.77])
    image_context = vision.ImageContext(
        crop_hints_params=crop_hints_params)

    response = client.crop_hints(image=image, image_context=image_context)
    hints = response.crop_hints_annotation.crop_hints

    for n, hint in enumerate(hints):
        print('\nCrop Hint: {}'.format(n))

        vertices = (['({},{})'.format(vertex.x, vertex.y)
                    for vertex in hint.bounding_poly.vertices])

        print('bounds: {}'.format(','.join(vertices)))

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '
            'https://cloud.google.com/apis/design/errors'.format(
                response.error.message))

gcloud

텍스트 인식을 수행하려면 다음 예시와 같이 gcloud ml vision suggest-crop 명령어를 사용합니다.

gcloud ml vision suggest-crop gs://cloud-samples-data/vision/crop_hints/bubble.jpeg

사용해 보기

아래와 같이 자르기 힌트 감지를 사용해 봅니다. 이미 지정된 이미지(gs://cloud-samples-data/vision/crop_hints/bubble.jpeg)를 사용하거나 자체 이미지를 대신 지정할 수도 있습니다. 실행을 선택하여 요청을 보냅니다.

자르기 전 이미지
이미지 크레딧: 야스민 당고, Unsplash

요청 본문:

{
  "requests": [
    {
      "image": {
        "source": {
          "gcsImageUri": "gs://cloud-samples-data/vision/crop_hints/bubble.jpeg"
        }
      },
      "features": [
        {
          "type": "CROP_HINTS"
        }
      ],
      "imageContext": {
        "cropHintsParams": {
          "aspectRatios": [
            2
          ]
        }
      }
    }
  ]
}