Mendeteksi label pada gambar dengan menggunakan library klien

Halaman ini menunjukkan cara memulai Vision API dalam bahasa pemrograman favorit Anda.


Untuk mengikuti panduan langkah demi langkah tugas ini langsung di Cloud Shell Editor, klik Pandu saya:

Pandu saya


Sebelum memulai

  1. Login ke akun Google Cloud Anda. Jika Anda baru menggunakan Google Cloud, buat akun untuk mengevaluasi performa produk kami dalam skenario dunia nyata. Pelanggan baru juga mendapatkan kredit gratis senilai $300 untuk menjalankan, menguji, dan men-deploy workload.
  2. Menginstal Google Cloud CLI.
  3. Untuk initialize gcloud CLI, jalankan perintah berikut:

    gcloud init
  4. Buat atau pilih project Google Cloud.

    • Membuat project Google Cloud:

      gcloud projects create PROJECT_ID

      Ganti PROJECT_ID dengan nama untuk project Google Cloud yang Anda buat.

    • Pilih project Google Cloud yang Anda buat:

      gcloud config set project PROJECT_ID

      Ganti PROJECT_ID dengan nama project Google Cloud Anda.

  5. Pastikan penagihan telah diaktifkan untuk project Google Cloud Anda.

  6. Aktifkan Vision API:

    gcloud services enable vision.googleapis.com
  7. Berikan peran ke Akun Google Anda. Jalankan perintah berikut satu kali untuk setiap peran IAM berikut: roles/storage.objectViewer

    gcloud projects add-iam-policy-binding PROJECT_ID --member="user:EMAIL_ADDRESS" --role=ROLE
    • Ganti PROJECT_ID dengan project ID Anda.
    • Ganti EMAIL_ADDRESS dengan alamat email Anda.
    • Ganti ROLE dengan setiap peran individual.
  8. Menginstal Google Cloud CLI.
  9. Untuk initialize gcloud CLI, jalankan perintah berikut:

    gcloud init
  10. Buat atau pilih project Google Cloud.

    • Membuat project Google Cloud:

      gcloud projects create PROJECT_ID

      Ganti PROJECT_ID dengan nama untuk project Google Cloud yang Anda buat.

    • Pilih project Google Cloud yang Anda buat:

      gcloud config set project PROJECT_ID

      Ganti PROJECT_ID dengan nama project Google Cloud Anda.

  11. Pastikan penagihan telah diaktifkan untuk project Google Cloud Anda.

  12. Aktifkan Vision API:

    gcloud services enable vision.googleapis.com
  13. Berikan peran ke Akun Google Anda. Jalankan perintah berikut satu kali untuk setiap peran IAM berikut: roles/storage.objectViewer

    gcloud projects add-iam-policy-binding PROJECT_ID --member="user:EMAIL_ADDRESS" --role=ROLE
    • Ganti PROJECT_ID dengan project ID Anda.
    • Ganti EMAIL_ADDRESS dengan alamat email Anda.
    • Ganti ROLE dengan setiap peran individual.

Menginstal library klien

Go

go get cloud.google.com/go/vision/apiv1

Java

Untuk mengetahui informasi selengkapnya tentang cara menyiapkan lingkungan pengembangan Java, lihat Panduan Penyiapan Lingkungan Pengembangan Java.

If you are using Maven, add the following to your pom.xml file. For more information about BOMs, see The Google Cloud Platform Libraries BOM.

<dependencyManagement>
  <dependencies>
    <dependency>
      <groupId>com.google.cloud</groupId>
      <artifactId>libraries-bom</artifactId>
      <version>26.44.0</version>
      <type>pom</type>
      <scope>import</scope>
    </dependency>
  </dependencies>
</dependencyManagement>

<dependencies>
  <dependency>
    <groupId>com.google.cloud</groupId>
    <artifactId>google-cloud-vision</artifactId>
  </dependency>

If you are using Gradle, add the following to your dependencies:

implementation 'com.google.cloud:google-cloud-vision:3.47.0'

If you are using sbt, add the following to your dependencies:

libraryDependencies += "com.google.cloud" % "google-cloud-vision" % "3.47.0"

If you're using Visual Studio Code, IntelliJ, or Eclipse, you can add client libraries to your project using the following IDE plugins:

The plugins provide additional functionality, such as key management for service accounts. Refer to each plugin's documentation for details.

Node.js

Untuk mendapatkan informasi lebih lanjut tentang cara menyiapkan lingkungan pengembangan Node.js, lihat Panduan Penyiapan Lingkungan Pengembangan Node.js.

npm install --save @google-cloud/vision

Python

Untuk informasi selengkapnya tentang menyiapkan lingkungan pengembangan Python, lihat Panduan Penyiapan Lingkungan Pengembangan Python.

pip install --upgrade google-cloud-vision

Deteksi label

Sekarang Anda dapat menggunakan Vision API untuk meminta informasi dari gambar, seperti deteksi label. Jalankan kode berikut untuk melakukan permintaan deteksi label gambar pertama Anda.

Go

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Go di Panduan memulai BigQuery menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Go API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


// Sample vision-quickstart uses the Google Cloud Vision API to label an image.
package main

import (
	"context"
	"fmt"
	"log"
	"os"

	vision "cloud.google.com/go/vision/apiv1"
)

func main() {
	ctx := context.Background()

	// Creates a client.
	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		log.Fatalf("Failed to create client: %v", err)
	}
	defer client.Close()

	// Sets the name of the image file to annotate.
	filename := "../testdata/cat.jpg"

	file, err := os.Open(filename)
	if err != nil {
		log.Fatalf("Failed to read file: %v", err)
	}
	defer file.Close()
	image, err := vision.NewImageFromReader(file)
	if err != nil {
		log.Fatalf("Failed to create image: %v", err)
	}

	labels, err := client.DetectLabels(ctx, image, nil, 10)
	if err != nil {
		log.Fatalf("Failed to detect labels: %v", err)
	}

	fmt.Println("Labels:")
	for _, label := range labels {
		fmt.Println(label.Description)
	}
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Java API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Imports the Google Cloud client library

import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Feature.Type;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.protobuf.ByteString;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.List;

public class QuickstartSample {
  public static void main(String... args) throws Exception {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient vision = ImageAnnotatorClient.create()) {

      // The path to the image file to annotate
      String fileName = "./resources/wakeupcat.jpg";

      // Reads the image file into memory
      Path path = Paths.get(fileName);
      byte[] data = Files.readAllBytes(path);
      ByteString imgBytes = ByteString.copyFrom(data);

      // Builds the image annotation request
      List<AnnotateImageRequest> requests = new ArrayList<>();
      Image img = Image.newBuilder().setContent(imgBytes).build();
      Feature feat = Feature.newBuilder().setType(Type.LABEL_DETECTION).build();
      AnnotateImageRequest request =
          AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
      requests.add(request);

      // Performs label detection on the image file
      BatchAnnotateImagesResponse response = vision.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        for (EntityAnnotation annotation : res.getLabelAnnotationsList()) {
          annotation
              .getAllFields()
              .forEach((k, v) -> System.out.format("%s : %s%n", k, v.toString()));
        }
      }
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Node.js API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

async function quickstart() {
  // Imports the Google Cloud client library
  const vision = require('@google-cloud/vision');

  // Creates a client
  const client = new vision.ImageAnnotatorClient();

  // Performs label detection on the image file
  const [result] = await client.labelDetection('./resources/wakeupcat.jpg');
  const labels = result.labelAnnotations;
  console.log('Labels:');
  labels.forEach(label => console.log(label.description));
}
quickstart();

Python

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Python API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


# Imports the Google Cloud client library
from google.cloud import vision

def run_quickstart() -> vision.EntityAnnotation:
    """Provides a quick start example for Cloud Vision."""

    # Instantiates a client
    client = vision.ImageAnnotatorClient()

    # The URI of the image file to annotate
    file_uri = "gs://cloud-samples-data/vision/label/wakeupcat.jpg"

    image = vision.Image()
    image.source.image_uri = file_uri

    # Performs label detection on the image file
    response = client.label_detection(image=image)
    labels = response.label_annotations

    print("Labels:")
    for label in labels:
        print(label.description)

    return labels

Selamat! Anda berhasil mengirimkan permintaan pertama ke Vision.

Bagaimana hasilnya?

Pembersihan

Agar tidak menimbulkan biaya pada Akun Google Anda untuk resource yang digunakan dalam panduan memulai ini:

Langkah selanjutnya

Cari tahu selengkapnya tentang Library Klien Vision API kami.