Mit der SafeSearch-Erkennung können Sie explizite Bildinhalte, etwa nur für Erwachsene oder mit gewalttätigen Szenen, erkennen. Dieses Feature verwendet die fünf Kategorien adult
, spoof
, medical
, violence
und racy
und gibt die Wahrscheinlichkeit dafür an, dass diese in einem Bild vorkommen. Weitere Informationen zu diesen Feldern finden Sie auf der Seite SafeSearchAnnotation.
SafeSearch-Erkennungsanfragen
Google Cloud-Projekt und Authentifizierung einrichten
Anstößige Inhalte in einem lokalen Bild erkennen
Sie können die Vision API für die Featureerkennung in einer lokalen Bilddatei verwenden.
Senden Sie bei REST-Anfragen den Inhalt der Bilddatei als base64-codierten String im Text Ihrer Anfrage.
Geben Sie für Anfragen zu gcloud
und Clientbibliotheken den Pfad zu einem lokalen Image in Ihrer Anfrage an.
REST
Ersetzen Sie diese Werte in den folgenden Anfragedaten:
- BASE64_ENCODED_IMAGE: Die Base64-Darstellung (ASCII-String) der Binärbilddaten. Dieser String sollte in etwa so aussehen:
/9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
- PROJECT_ID: Ihre Google Cloud-Projekt-ID.
HTTP-Methode und URL:
POST https://vision.googleapis.com/v1/images:annotate
JSON-Text der Anfrage:
{ "requests": [ { "image": { "content": "BASE64_ENCODED_IMAGE" }, "features": [ { "type": "SAFE_SEARCH_DETECTION" }, ] } ] }
Wenn Sie die Anfrage senden möchten, wählen Sie eine der folgenden Optionen aus:
curl
Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json
und führen Sie den folgenden Befehl aus:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json
und führen Sie den folgenden Befehl aus:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
Sie sollten eine JSON-Antwort ähnlich wie diese erhalten:
{ "responses": [ { "safeSearchAnnotation": { "adult": "UNLIKELY", "spoof": "VERY_UNLIKELY", "medical": "VERY_UNLIKELY", "violence": "LIKELY", "racy": "POSSIBLE" } } ] }
Go
Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Go-Einrichtungsanleitung in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Vision-Referenzdokumentation zur Go API.
Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Java
Bevor Sie dieses Beispiel anwenden, folgen Sie der Anleitung für die Einrichtung von Java in der Vision API-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Java-Referenzdokumentation zur Vision API.
Node.js
Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Node.js-Einrichtungsanleitung in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Vision-Referenzdokumentation zur Node.js API.
Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Python
Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Python-Einrichtungsanleitung in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Vision-Referenzdokumentation zur Python API.
Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Anstößige Inhalte in einem Remote-Bild erkennen
Sie können die Vision API verwenden, um eine Featureerkennung für eine Remote-Bilddatei durchzuführen, die sich in Cloud Storage oder im Web befindet. Zum Senden einer Remote-Dateianfrage geben Sie die Web-URL oder den Cloud Storage-URI der Datei im Anfragetext an.
REST
Ersetzen Sie diese Werte in den folgenden Anfragedaten:
- CLOUD_STORAGE_IMAGE_URI: Der Pfad zu einer gültigen Bilddatei in einem Cloud Storage-Bucket. Sie müssen zumindest Leseberechtigungen für die Datei haben.
Beispiel:
gs://my-storage-bucket/img/image1.png
- PROJECT_ID: Ihre Google Cloud-Projekt-ID.
HTTP-Methode und URL:
POST https://vision.googleapis.com/v1/images:annotate
JSON-Text der Anfrage:
{ "requests": [ { "image": { "source": { "imageUri": "CLOUD_STORAGE_IMAGE_URI" } }, "features": [ { "type": "SAFE_SEARCH_DETECTION" } ] } ] }
Wenn Sie die Anfrage senden möchten, wählen Sie eine der folgenden Optionen aus:
curl
Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json
und führen Sie den folgenden Befehl aus:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json
und führen Sie den folgenden Befehl aus:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
Sie sollten eine JSON-Antwort ähnlich wie diese erhalten:
{ "responses": [ { "safeSearchAnnotation": { "adult": "UNLIKELY", "spoof": "VERY_UNLIKELY", "medical": "VERY_UNLIKELY", "violence": "LIKELY", "racy": "POSSIBLE" } } ] }
Go
Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Go-Einrichtungsanleitung in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Vision-Referenzdokumentation zur Go API.
Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Java
Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Java-Einrichtungsanleitung in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Vision-Referenzdokumentation zur Java API.
Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Node.js
Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Node.js-Einrichtungsanleitung in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Vision-Referenzdokumentation zur Node.js API.
Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Python
Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Python-Einrichtungsanleitung in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Vision-Referenzdokumentation zur Python API.
Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
gcloud
Verwenden Sie zum Durchführen der SafeSearch-Erkennung den Befehl gcloud ml vision detect-safe-search
wie im folgenden Beispiel gezeigt:
gcloud ml vision detect-safe-search gs://my_bucket/input_file