AutoML Vision API Tutorial

This tutorial demonstrates how to create a new model with your own set of training images, evaluate the results and predict the classification of test image using AutoML Vision.

The tutorial uses a dataset with images of five different kinds of flowers: sunflowers, tulips, daisy, roses and dandelions. It covers training a custom model, evaluating model performance, and classifying new images using the custom model.

Prerequisites

Configure your project environment

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud Console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Cloud project. Learn how to confirm that billing is enabled for your project.

  4. Enable the AutoML Vision APIs.

    Enable the APIs

  5. Install the gcloud command line tool.
  6. Follow the instructions to create a service account and download a key file.
  7. Set the GOOGLE_APPLICATION_CREDENTIALS environment variable to the path to the service account key file that you downloaded when you created the service account. For example:
    export GOOGLE_APPLICATION_CREDENTIALS=key-file
  8. Add your new service account to the AutoML Editor IAM role with the following commands. Replace project-id with the name of your GCP project and replace service-account-name with the name of your new service account, for example service-account1@myproject.iam.gserviceaccount.com:
    gcloud auth login
    gcloud projects add-iam-policy-binding project-id \ 
     --member="user:your-userid@your-domain" \ 
     --role="roles/automl.admin"
    gcloud projects add-iam-policy-binding project-id \ 
     --member=serviceAccount:service-account-name \ 
     --role="roles/automl.editor"
  9. Allow the AutoML Vision service accounts to access your Google Cloud project resources:
    gcloud projects add-iam-policy-binding project-id \ 
     --member="serviceAccount:custom-vision@appspot.gserviceaccount.com" \ 
     --role="roles/storage.admin"
  10. Install the client library.
  11. Set the PROJECT_ID and REGION_NAME environment variables.

    Replace project-id with the Project ID of your Google Cloud Platform project. AutoML Vision currently requires the location us-central1.
    export PROJECT_ID="project-id"
    export REGION_NAME="us-central1"
  12. Create a Google Cloud Storage bucket to store the documents that you will use to train your custom model.

    The bucket name must be in the format: $PROJECT_ID-vcm. The following command creates a storage bucket in the us-central1 region named $PROJECT_ID-vcm.
    gsutil mb -p ${PROJECT_ID} -c regional -l us-central1 gs://${PROJECT_ID}-vcm/
  13. Set the BUCKET variable.
    export BUCKET=${PROJECT_ID}-vcm
  14. Copy the publicly available dataset of flower images from gs://cloud-samples-data/img/flower_photos/ into your Google Cloud Storage bucket.

    In your Cloud Shell session, enter:
    gsutil -m cp -R gs://cloud-samples-data/ai-platform/flowers/ gs://${BUCKET}/img/

    The file copying takes about 20 minutes to complete.

    This command also copies the all_data.csv file, which lists the original filenames and their labels.

  15. The sample dataset contains a CSV file with the location and labels for each image (see Preparing your training data for details about the required format). Update the CSV file to point to the files in your own bucket:
    gsutil cat gs://${BUCKET}/img/flowers/all_data.csv | sed "s:cloud-ml-data/img/flower_photos/:${BUCKET}/img/flowers/:" > all_data.csv
    Then copy the updated CSV file into your bucket:
    gsutil cp all_data.csv gs://${BUCKET}/csv/

Source code file locations

You can download the source code from the location provided below. After downloading, you can copy the source code into your AutoML Vision project folder.

Python

The tutorial consists of these Python files:

Java

The tutorial consists of these Java files:

Node.js

The tutorial consists of these Node.js programs:

Running the application

Step 1: Create the Flowers dataset

The first step in creating a custom model is to create an empty dataset that will eventually hold the training data for the model. When you create a dataset, you specify the type of classification you want your custom model to perform:

  • MULTICLASS assigns a single label to each classified image
  • MULTILABEL allows an image to be assigned multiple labels

This tutorial creates a dataset named flowers and uses MULTICLASS.

Copy the Code

Python

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# display_name = "your_datasets_display_name"

client = automl.AutoMlClient()

# A resource that represents Google Cloud Platform location.
project_location = f"projects/{project_id}/locations/us-central1"
# Specify the classification type
# Types:
# MultiLabel: Multiple labels are allowed for one example.
# MultiClass: At most one label is allowed per example.
# https://cloud.google.com/automl/docs/reference/rpc/google.cloud.automl.v1#classificationtype
metadata = automl.ImageClassificationDatasetMetadata(
    classification_type=automl.ClassificationType.MULTILABEL
)
dataset = automl.Dataset(
    display_name=display_name,
    image_classification_dataset_metadata=metadata,
)

# Create a dataset with the dataset metadata in the region.
response = client.create_dataset(parent=project_location, dataset=dataset)

created_dataset = response.result()

# Display the dataset information
print("Dataset name: {}".format(created_dataset.name))
print("Dataset id: {}".format(created_dataset.name.split("/")[-1]))

Java

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.ClassificationType;
import com.google.cloud.automl.v1.Dataset;
import com.google.cloud.automl.v1.ImageClassificationDatasetMetadata;
import com.google.cloud.automl.v1.LocationName;
import com.google.cloud.automl.v1.OperationMetadata;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class VisionClassificationCreateDataset {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String displayName = "YOUR_DATASET_NAME";
    createDataset(projectId, displayName);
  }

  // Create a dataset
  static void createDataset(String projectId, String displayName)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // A resource that represents Google Cloud Platform location.
      LocationName projectLocation = LocationName.of(projectId, "us-central1");

      // Specify the classification type
      // Types:
      // MultiLabel: Multiple labels are allowed for one example.
      // MultiClass: At most one label is allowed per example.
      ClassificationType classificationType = ClassificationType.MULTILABEL;
      ImageClassificationDatasetMetadata metadata =
          ImageClassificationDatasetMetadata.newBuilder()
              .setClassificationType(classificationType)
              .build();
      Dataset dataset =
          Dataset.newBuilder()
              .setDisplayName(displayName)
              .setImageClassificationDatasetMetadata(metadata)
              .build();
      OperationFuture<Dataset, OperationMetadata> future =
          client.createDatasetAsync(projectLocation, dataset);

      Dataset createdDataset = future.get();

      // Display the dataset information.
      System.out.format("Dataset name: %s\n", createdDataset.getName());
      // To get the dataset id, you have to parse it out of the `name` field. As dataset Ids are
      // required for other methods.
      // Name Form: `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}`
      String[] names = createdDataset.getName().split("/");
      String datasetId = names[names.length - 1];
      System.out.format("Dataset id: %s\n", datasetId);
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const displayName = 'YOUR_DISPLAY_NAME';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function createDataset() {
  // Construct request
  // Specify the classification type
  // Types:
  // MultiLabel: Multiple labels are allowed for one example.
  // MultiClass: At most one label is allowed per example.
  const request = {
    parent: client.locationPath(projectId, location),
    dataset: {
      displayName: displayName,
      imageClassificationDatasetMetadata: {
        classificationType: 'MULTILABEL',
      },
    },
  };

  // Create dataset
  const [operation] = await client.createDataset(request);

  // Wait for operation to complete.
  const [response] = await operation.promise();

  console.log(`Dataset name: ${response.name}`);
  console.log(`
    Dataset id: ${
      response.name
        .split('/')
        [response.name.split('/').length - 1].split('\n')[0]
    }`);
}

createDataset();

Request

Run the create_dataset function to create an empty dataset. You must modify the following lines of code:

  • Set the project_id to your PROJECT_ID
  • Set the display_name for the dataset (flowers)
  • Change MULTILABEL to `MULTICLASS

Python

python3 vision_classification_create_dataset.py

Java

mvn compile exec:java -Dexec.mainClass="com.example.automl.VisionClassificationCreateDataset"

Node.js

node vision_classification_create_dataset.js

Response

The response includes the details of the newly created dataset, including the Dataset ID that you'll use to reference the dataset in future requests. We recommend that you set an environment variable DATASET_ID to the returned Dataset ID value.

Dataset name: projects/216065747626/locations/us-central1/datasets/ICN7372141011130533778
Dataset id: ICN7372141011130533778
Dataset display name: flowers
Image classification dataset specification:
       classification_type: MULTICLASS
Dataset example count: 0
Dataset create time:
       seconds: 1530251987
       nanos: 216586000

Step 2: Import images into the dataset

The next step is to populate the dataset with training images labeled using the target labels.

The import_data function interface takes as input a CSV file that lists the locations of all training images and the proper label for each one. (See Prepare your data for details about the required format.) For this tutorial, we will use the labeled images that you copied into your Google Cloud Storage bucket, which are listed in gs://$PROJECT_ID-vcm/csv/all_data.csv.

Copy the Code

Python

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# dataset_id = "YOUR_DATASET_ID"
# path = "gs://YOUR_BUCKET_ID/path/to/data.csv"

client = automl.AutoMlClient()
# Get the full path of the dataset.
dataset_full_id = client.dataset_path(project_id, "us-central1", dataset_id)
# Get the multiple Google Cloud Storage URIs
input_uris = path.split(",")
gcs_source = automl.GcsSource(input_uris=input_uris)
input_config = automl.InputConfig(gcs_source=gcs_source)
# Import data from the input URI
response = client.import_data(name=dataset_full_id, input_config=input_config)

print("Processing import...")
print("Data imported. {}".format(response.result()))

Java

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.DatasetName;
import com.google.cloud.automl.v1.GcsSource;
import com.google.cloud.automl.v1.InputConfig;
import com.google.cloud.automl.v1.OperationMetadata;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.Arrays;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

class ImportDataset {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    String path = "gs://BUCKET_ID/path_to_training_data.csv";
    importDataset(projectId, datasetId, path);
  }

  // Import a dataset
  static void importDataset(String projectId, String datasetId, String path)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the complete path of the dataset.
      DatasetName datasetFullId = DatasetName.of(projectId, "us-central1", datasetId);

      // Get multiple Google Cloud Storage URIs to import data from
      GcsSource gcsSource =
          GcsSource.newBuilder().addAllInputUris(Arrays.asList(path.split(","))).build();

      // Import data from the input URI
      InputConfig inputConfig = InputConfig.newBuilder().setGcsSource(gcsSource).build();
      System.out.println("Processing import...");

      // Start the import job
      OperationFuture<Empty, OperationMetadata> operation =
          client.importDataAsync(datasetFullId, inputConfig);

      System.out.format("Operation name: %s%n", operation.getName());

      // If you want to wait for the operation to finish, adjust the timeout appropriately. The
      // operation will still run if you choose not to wait for it to complete. You can check the
      // status of your operation using the operation's name.
      Empty response = operation.get(45, TimeUnit.MINUTES);
      System.out.format("Dataset imported. %s%n", response);
    } catch (TimeoutException e) {
      System.out.println("The operation's polling period was not long enough.");
      System.out.println("You can use the Operation's name to get the current status.");
      System.out.println("The import job is still running and will complete as expected.");
      throw e;
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const datasetId = 'YOUR_DISPLAY_ID';
// const path = 'gs://BUCKET_ID/path_to_training_data.csv';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function importDataset() {
  // Construct request
  const request = {
    name: client.datasetPath(projectId, location, datasetId),
    inputConfig: {
      gcsSource: {
        inputUris: path.split(','),
      },
    },
  };

  // Import dataset
  console.log('Proccessing import');
  const [operation] = await client.importData(request);

  // Wait for operation to complete.
  const [response] = await operation.promise();
  console.log(`Dataset imported: ${response}`);
}

importDataset();

Request

Run the import_data function to import the training content. The first piece of code to change is the Dataset ID from the previous step and the second is the URI of all_data.csv. You must modify the following lines of code:

  • Set the project_id to your PROJECT_ID
  • Set the dataset_id for the dataset (from the output of the previous step)
  • Set the path which is the URI of the (gs://YOUR_PROJECT_ID-vcm/csv/all_data.csv)

  • python3 import_dataset.py {Python}

  • mvn compile exec:java -Dexec.mainClass="com.example.automl.ImportDataset" {Java}

  • node import_dataset.js {Node.js}

Response

Processing import...
Dataset imported.

Step 3: Create (train) the model

Now that you have a dataset of labeled training images, you can train a new model.

Copy the Code

Python

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# dataset_id = "YOUR_DATASET_ID"
# display_name = "your_models_display_name"

client = automl.AutoMlClient()

# A resource that represents Google Cloud Platform location.
project_location = f"projects/{project_id}/locations/us-central1"
# Leave model unset to use the default base model provided by Google
# train_budget_milli_node_hours: The actual train_cost will be equal or
# less than this value.
# https://cloud.google.com/automl/docs/reference/rpc/google.cloud.automl.v1#imageclassificationmodelmetadata
metadata = automl.ImageClassificationModelMetadata(
    train_budget_milli_node_hours=24000
)
model = automl.Model(
    display_name=display_name,
    dataset_id=dataset_id,
    image_classification_model_metadata=metadata,
)

# Create a model with the model metadata in the region.
response = client.create_model(parent=project_location, model=model)

print("Training operation name: {}".format(response.operation.name))
print("Training started...")

Java

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.ImageClassificationModelMetadata;
import com.google.cloud.automl.v1.LocationName;
import com.google.cloud.automl.v1.Model;
import com.google.cloud.automl.v1.OperationMetadata;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class VisionClassificationCreateModel {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    String displayName = "YOUR_DATASET_NAME";
    createModel(projectId, datasetId, displayName);
  }

  // Create a model
  static void createModel(String projectId, String datasetId, String displayName)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // A resource that represents Google Cloud Platform location.
      LocationName projectLocation = LocationName.of(projectId, "us-central1");
      // Set model metadata.
      ImageClassificationModelMetadata metadata =
          ImageClassificationModelMetadata.newBuilder().setTrainBudgetMilliNodeHours(24000).build();
      Model model =
          Model.newBuilder()
              .setDisplayName(displayName)
              .setDatasetId(datasetId)
              .setImageClassificationModelMetadata(metadata)
              .build();

      // Create a model with the model metadata in the region.
      OperationFuture<Model, OperationMetadata> future =
          client.createModelAsync(projectLocation, model);
      // OperationFuture.get() will block until the model is created, which may take several hours.
      // You can use OperationFuture.getInitialFuture to get a future representing the initial
      // response to the request, which contains information while the operation is in progress.
      System.out.format("Training operation name: %s\n", future.getInitialFuture().get().getName());
      System.out.println("Training started...");
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const dataset_id = 'YOUR_DATASET_ID';
// const displayName = 'YOUR_DISPLAY_NAME';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function createModel() {
  // Construct request
  const request = {
    parent: client.locationPath(projectId, location),
    model: {
      displayName: displayName,
      datasetId: datasetId,
      imageClassificationModelMetadata: {
        trainBudgetMilliNodeHours: 24000,
      },
    },
  };

  // Don't wait for the LRO
  const [operation] = await client.createModel(request);
  console.log(`Training started... ${operation}`);
  console.log(`Training operation name: ${operation.name}`);
}

createModel();

Request

Call the create_model function to create a model. The Dataset ID is from the previous steps. You must modify the following lines of code:

  • Set the project_id to your PROJECT_ID
  • Set the dataset_id for the dataset (from the output of the previous step)
  • Set the display_name for your model (flowers_model)

  • python3 vision_classification_create_model.py {Python}

  • mvn compile exec:java -Dexec.mainClass="com.example.automl.VisionClassificationCreateModel" {Java}

  • node vision_classification_create_model.js {Node.js}

Response

The create_model function starts a training operation and prints the operation name. Training happens asynchronously and can take a while to complete, so you can use the operation ID to check training status. When training is complete, create_model returns the Model ID. As with the Dataset ID, you might want to set an environment variable MODEL_ID to the returned Model ID value.

Training operation name: projects/216065747626/locations/us-central1/operations/ICN3007727620979824033
Training started...
Model name: projects/216065747626/locations/us-central1/models/ICN7683346839371803263
Model id: ICN7683346839371803263
Model display name: flowers_model
Image classification model metadata:
Training budget: 1
Training cost: 1
Stop reason:
Base model id:
Model create time:
        seconds: 1529649600
        nanos: 966000000
Model deployment state: deployed

Step 4: Evaluate the model

After training, you can evaluate your model's readiness by reviewing its precision, recall, and F1 score.

The display_evaluation function takes the Model ID as a parameter.

Copy the Code

Python

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)

print("List of model evaluations:")
for evaluation in client.list_model_evaluations(parent=model_full_id, filter=""):
    print("Model evaluation name: {}".format(evaluation.name))
    print("Model annotation spec id: {}".format(evaluation.annotation_spec_id))
    print("Create Time: {}".format(evaluation.create_time))
    print("Evaluation example count: {}".format(evaluation.evaluated_example_count))
    print(
        "Classification model evaluation metrics: {}".format(
            evaluation.classification_evaluation_metrics
        )
    )

Java


import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.ListModelEvaluationsRequest;
import com.google.cloud.automl.v1.ModelEvaluation;
import com.google.cloud.automl.v1.ModelName;
import java.io.IOException;

class ListModelEvaluations {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    listModelEvaluations(projectId, modelId);
  }

  // List model evaluations
  static void listModelEvaluations(String projectId, String modelId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      ListModelEvaluationsRequest modelEvaluationsrequest =
          ListModelEvaluationsRequest.newBuilder().setParent(modelFullId.toString()).build();

      // List all the model evaluations in the model by applying filter.
      System.out.println("List of model evaluations:");
      for (ModelEvaluation modelEvaluation :
          client.listModelEvaluations(modelEvaluationsrequest).iterateAll()) {

        System.out.format("Model Evaluation Name: %s\n", modelEvaluation.getName());
        System.out.format("Model Annotation Spec Id: %s", modelEvaluation.getAnnotationSpecId());
        System.out.println("Create Time:");
        System.out.format("\tseconds: %s\n", modelEvaluation.getCreateTime().getSeconds());
        System.out.format("\tnanos: %s", modelEvaluation.getCreateTime().getNanos() / 1e9);
        System.out.format(
            "Evalution Example Count: %d\n", modelEvaluation.getEvaluatedExampleCount());
        System.out.format(
            "Classification Model Evaluation Metrics: %s\n",
            modelEvaluation.getClassificationEvaluationMetrics());
      }
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function listModelEvaluations() {
  // Construct request
  const request = {
    parent: client.modelPath(projectId, location, modelId),
    filter: '',
  };

  const [response] = await client.listModelEvaluations(request);

  console.log('List of model evaluations:');
  for (const evaluation of response) {
    console.log(`Model evaluation name: ${evaluation.name}`);
    console.log(`Model annotation spec id: ${evaluation.annotationSpecId}`);
    console.log(`Model display name: ${evaluation.displayName}`);
    console.log('Model create time');
    console.log(`\tseconds ${evaluation.createTime.seconds}`);
    console.log(`\tnanos ${evaluation.createTime.nanos / 1e9}`);
    console.log(
      `Evaluation example count: ${evaluation.evaluatedExampleCount}`
    );
    console.log(
      `Classification model evaluation metrics: ${evaluation.classificationEvaluationMetrics}`
    );
  }
}

listModelEvaluations();

Request

Make a request to display the overall evaluation performance of the model by executing the following request. You must modify the following lines of code:

  • Set the project_id to your PROJECT_ID
  • Set the model_id to your model's id

  • python3 list_model_evaluations.py {Python}

  • mvn compile exec:java -Dexec.mainClass="com.example.automl.ListModelEvaluations" {Java}

  • node list_model_evaluations.js {Node.js}

Response

If the precision and recall scores are too low, you can strengthen the training dataset and re-train your model. For more information, see Evaluating models.

Precision and recall are based on a score threshold of 0.5
Model Precision: 96.3%
Model Recall: 95.7%
Model F1 score: 96.0%
Model Precision@1: 96.33%
Model Recall@1: 95.74%
Model F1 score@1: 96.04%

Step 5: Use a model to make a prediction

When your custom model meets your quality standards, you can use it to classify new flower images.

Copy the Code

Python

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"
# file_path = "path_to_local_file.jpg"

prediction_client = automl.PredictionServiceClient()

# Get the full path of the model.
model_full_id = automl.AutoMlClient.model_path(project_id, "us-central1", model_id)

# Read the file.
with open(file_path, "rb") as content_file:
    content = content_file.read()

image = automl.Image(image_bytes=content)
payload = automl.ExamplePayload(image=image)

# params is additional domain-specific parameters.
# score_threshold is used to filter the result
# https://cloud.google.com/automl/docs/reference/rpc/google.cloud.automl.v1#predictrequest
params = {"score_threshold": "0.8"}

request = automl.PredictRequest(name=model_full_id, payload=payload, params=params)
response = prediction_client.predict(request=request)

print("Prediction results:")
for result in response.payload:
    print("Predicted class name: {}".format(result.display_name))
    print("Predicted class score: {}".format(result.classification.score))

Java

import com.google.cloud.automl.v1.AnnotationPayload;
import com.google.cloud.automl.v1.ExamplePayload;
import com.google.cloud.automl.v1.Image;
import com.google.cloud.automl.v1.ModelName;
import com.google.cloud.automl.v1.PredictRequest;
import com.google.cloud.automl.v1.PredictResponse;
import com.google.cloud.automl.v1.PredictionServiceClient;
import com.google.protobuf.ByteString;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

class VisionClassificationPredict {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    String filePath = "path_to_local_file.jpg";
    predict(projectId, modelId, filePath);
  }

  static void predict(String projectId, String modelId, String filePath) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PredictionServiceClient client = PredictionServiceClient.create()) {
      // Get the full path of the model.
      ModelName name = ModelName.of(projectId, "us-central1", modelId);
      ByteString content = ByteString.copyFrom(Files.readAllBytes(Paths.get(filePath)));
      Image image = Image.newBuilder().setImageBytes(content).build();
      ExamplePayload payload = ExamplePayload.newBuilder().setImage(image).build();
      PredictRequest predictRequest =
          PredictRequest.newBuilder()
              .setName(name.toString())
              .setPayload(payload)
              .putParams(
                  "score_threshold", "0.8") // [0.0-1.0] Only produce results higher than this value
              .build();

      PredictResponse response = client.predict(predictRequest);

      for (AnnotationPayload annotationPayload : response.getPayloadList()) {
        System.out.format("Predicted class name: %s\n", annotationPayload.getDisplayName());
        System.out.format(
            "Predicted class score: %.2f\n", annotationPayload.getClassification().getScore());
      }
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';
// const filePath = 'path_to_local_file.jpg';

// Imports the Google Cloud AutoML library
const {PredictionServiceClient} = require('@google-cloud/automl').v1;
const fs = require('fs');

// Instantiates a client
const client = new PredictionServiceClient();

// Read the file content for translation.
const content = fs.readFileSync(filePath);

async function predict() {
  // Construct request
  // params is additional domain-specific parameters.
  // score_threshold is used to filter the result
  const request = {
    name: client.modelPath(projectId, location, modelId),
    payload: {
      image: {
        imageBytes: content,
      },
    },
  };

  const [response] = await client.predict(request);

  for (const annotationPayload of response.payload) {
    console.log(`Predicted class name: ${annotationPayload.displayName}`);
    console.log(
      `Predicted class score: ${annotationPayload.classification.score}`
    );
  }
}

predict();

Request

For the predict function you must modify the following lines of code:

  • Set the project_id to your PROJECT_ID
  • Set the model_id to your model's id
  • Set the file_path to the downloaded file ("resources/test.png")

  • python3 vision_classification_predict.py {Python}

  • mvn compile exec:java -Dexec.mainClass="com.example.automl.VisionClassificationPredict" {Java}

  • node vision_classification_predict.js {Node.js}

Response

The function returns the classification score for how well the image matches each category, exceeding the stated confidence threshold of 0.7.

Prediction results:
Predicted class name: dandelion
Predicted class score: 0.9702693223953247

Step 6: Delete the model

When you are done using this sample model, you can delete it permanently. You will no longer be able to use the model for prediction.

Copy the Code

Python

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)
response = client.delete_model(name=model_full_id)

print("Model deleted. {}".format(response.result()))

Java

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.ModelName;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class DeleteModel {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    deleteModel(projectId, modelId);
  }

  // Delete a model
  static void deleteModel(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);

      // Delete a model.
      Empty response = client.deleteModelAsync(modelFullId).get();

      System.out.println("Model deletion started...");
      System.out.println(String.format("Model deleted. %s", response));
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function deleteModel() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
  };

  const [response] = await client.deleteModel(request);
  console.log(`Model deleted: ${response}`);
}

deleteModel();

Request

Make a request with operation type delete_model to delete a model you created you must modify the following lines of code:

  • Set the project_id to your PROJECT_ID
  • Set the model_id to your model's id

  • python3 delete_model.py {Python}

  • mvn compile exec:java -Dexec.mainClass="com.example.automl.DeleteModel" {Java}

  • node delete_model.js {Node.js}

Response

Model deleted.