Reconocimiento de acciones

Organiza tus páginas con colecciones Guarda y categoriza el contenido según tus preferencias.

El reconocimiento de acciones identifica diferentes acciones a partir de clips de video, como caminar o bailar. Cada una de las acciones puede o no realizarse durante todo el video.

Usa un modelo de AutoML

Antes de comenzar

Para obtener información sobre cómo crear un modelo de AutoML, consulta la Guía para principiantes de Vertex AI. Para obtener instrucciones sobre cómo crear tu modelo de AutoML, comienza con “Crea un conjunto de datos” mediante Console o la API.

Usa tu modelo de AutoML

En la siguiente muestra de código, se indica cómo usar tu modelo de AutoML para el reconocimiento de acciones con la biblioteca cliente de transmisión.

Python

import io

from google.cloud import videointelligence_v1p3beta1 as videointelligence

# path = 'path_to_file'
# project_id = 'project_id'
# model_id = 'automl_action_recognition_model_id'

client = videointelligence.StreamingVideoIntelligenceServiceClient()

model_path = "projects/{}/locations/us-central1/models/{}".format(
    project_id, model_id
)

automl_config = videointelligence.StreamingAutomlActionRecognitionConfig(
    model_name=model_path
)

video_config = videointelligence.StreamingVideoConfig(
    feature=videointelligence.StreamingFeature.STREAMING_AUTOML_ACTION_RECOGNITION,
    automl_action_recognition_config=automl_config,
)

# config_request should be the first in the stream of requests.
config_request = videointelligence.StreamingAnnotateVideoRequest(
    video_config=video_config
)

# Set the chunk size to 5MB (recommended less than 10MB).
chunk_size = 5 * 1024 * 1024

def stream_generator():
    yield config_request
    # Load file content.
    # Note: Input videos must have supported video codecs. See
    # https://cloud.google.com/video-intelligence/docs/streaming/streaming#supported_video_codecs
    # for more details.
    with io.open(path, "rb") as video_file:
        while True:
            data = video_file.read(chunk_size)
            if not data:
                break
            yield videointelligence.StreamingAnnotateVideoRequest(
                input_content=data
            )

requests = stream_generator()

# streaming_annotate_video returns a generator.
# The default timeout is about 300 seconds.
# To process longer videos it should be set to
# larger than the length (in seconds) of the video.
responses = client.streaming_annotate_video(requests, timeout=900)

# Each response corresponds to about 1 second of video.
for response in responses:
    # Check for errors.
    if response.error.message:
        print(response.error.message)
        break

    for label in response.annotation_results.label_annotations:
        for frame in label.frames:
            print(
                "At {:3d}s segment, {:5.1%} {}".format(
                    frame.time_offset.seconds,
                    frame.confidence,
                    label.entity.entity_id,
                )
            )