Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
El reconocimiento de acciones identifica diferentes acciones de los clips de video, como caminar o bailar. Cada una de las acciones puede realizarse o no durante toda la duración del video.
Usa un modelo de AutoML
Antes de comenzar
Si deseas obtener información sobre cómo crear un modelo de AutoML, consulta la guía para principiantes de Vertex AI. Para obtener instrucciones sobre cómo crear tu modelo de AutoML, consulta Datos de video en "Desarrolla y usa modelos de AA" en la documentación de Vertex AI.
Usa tu modelo de AutoML
En la siguiente muestra de código, se indica cómo usar tu modelo de AutoML para el reconocimiento de acciones con la biblioteca cliente de transmisión.
importiofromgoogle.cloudimportvideointelligence_v1p3beta1asvideointelligence# path = 'path_to_file'# project_id = 'project_id'# model_id = 'automl_action_recognition_model_id'client=videointelligence.StreamingVideoIntelligenceServiceClient()model_path="projects/{}/locations/us-central1/models/{}".format(project_id,model_id)automl_config=videointelligence.StreamingAutomlActionRecognitionConfig(model_name=model_path)video_config=videointelligence.StreamingVideoConfig(feature=videointelligence.StreamingFeature.STREAMING_AUTOML_ACTION_RECOGNITION,automl_action_recognition_config=automl_config,)# config_request should be the first in the stream of requests.config_request=videointelligence.StreamingAnnotateVideoRequest(video_config=video_config)# Set the chunk size to 5MB (recommended less than 10MB).chunk_size=5*1024*1024defstream_generator():yieldconfig_request# Load file content.# Note: Input videos must have supported video codecs. See# https://cloud.google.com/video-intelligence/docs/streaming/streaming#supported_video_codecs# for more details.withio.open(path,"rb")asvideo_file:whileTrue:data=video_file.read(chunk_size)ifnotdata:breakyieldvideointelligence.StreamingAnnotateVideoRequest(input_content=data)requests=stream_generator()# streaming_annotate_video returns a generator.# The default timeout is about 300 seconds.# To process longer videos it should be set to# larger than the length (in seconds) of the video.responses=client.streaming_annotate_video(requests,timeout=900)# Each response corresponds to about 1 second of video.forresponseinresponses:# Check for errors.ifresponse.error.message:print(response.error.message)breakforlabelinresponse.annotation_results.label_annotations:forframeinlabel.frames:print("At {:3d}s segment, {:5.1%}{}".format(frame.time_offset.seconds,frame.confidence,label.entity.entity_id,))
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-02-26 (UTC)"],[],[]]