빠른 시작: 클라이언트 라이브러리 사용

이 빠른 시작에서는 Video Intelligence API를 소개합니다. 이 빠른 시작에서는 Google Cloud 프로젝트 및 승인을 설정한 후 Video Intelligence에 동영상 주석을 작성하도록 요청합니다.

시작하기 전에

  1. Google Cloud 계정에 로그인합니다. Google Cloud를 처음 사용하는 경우 계정을 만들고 Google 제품의 실제 성능을 평가해 보세요. 신규 고객에게는 워크로드를 실행, 테스트, 배포하는 데 사용할 수 있는 $300의 무료 크레딧이 제공됩니다.
  2. Google Cloud Console의 프로젝트 선택기 페이지에서 Google Cloud 프로젝트를 선택하거나 만듭니다.

    프로젝트 선택기로 이동

  3. Cloud 프로젝트에 결제가 사용 설정되어 있는지 확인합니다. 프로젝트에 결제가 사용 설정되어 있는지 확인하는 방법을 알아보세요.

  4. Cloud Video Intelligence API를 사용 설정합니다.

    API 사용 설정

  5. 서비스 계정을 만듭니다.

    1. Cloud Console에서 서비스 계정 만들기 페이지로 이동합니다.

      서비스 계정 만들기로 이동
    2. 프로젝트를 선택합니다.
    3. 서비스 계정 이름 필드에 이름을 입력합니다. Cloud Console은 이 이름을 기반으로 서비스 계정 ID 필드를 채웁니다.

      서비스 계정 설명 필드에 설명을 입력합니다. 예를 들면 Service account for quickstart입니다.

    4. 완료를 클릭하여 서비스 계정 만들기를 마칩니다.

      브라우저 창을 닫지 마세요. 다음 단계에서 사용합니다.

  6. 서비스 계정 키 만들기

    1. Cloud Console에서 만든 서비스 계정의 이메일 주소를 클릭합니다.
    2. 를 클릭합니다.
    3. 키 추가를 클릭한 후 새 키 만들기를 클릭합니다.
    4. 만들기를 클릭합니다. JSON 키 파일이 컴퓨터에 다운로드됩니다.
    5. 닫기를 클릭합니다.
  7. GOOGLE_APPLICATION_CREDENTIALS 환경 변수를 서비스 계정 키가 포함된 JSON 파일의 경로로 설정합니다. 이 변수는 현재 셸 세션에만 적용되므로, 새 세션을 열 경우, 변수를 다시 설정합니다.

  8. Cloud SDK 설치 및 초기화
  9. Google Cloud Console의 프로젝트 선택기 페이지에서 Google Cloud 프로젝트를 선택하거나 만듭니다.

    프로젝트 선택기로 이동

  10. Cloud 프로젝트에 결제가 사용 설정되어 있는지 확인합니다. 프로젝트에 결제가 사용 설정되어 있는지 확인하는 방법을 알아보세요.

  11. Cloud Video Intelligence API를 사용 설정합니다.

    API 사용 설정

  12. 서비스 계정을 만듭니다.

    1. Cloud Console에서 서비스 계정 만들기 페이지로 이동합니다.

      서비스 계정 만들기로 이동
    2. 프로젝트를 선택합니다.
    3. 서비스 계정 이름 필드에 이름을 입력합니다. Cloud Console은 이 이름을 기반으로 서비스 계정 ID 필드를 채웁니다.

      서비스 계정 설명 필드에 설명을 입력합니다. 예를 들면 Service account for quickstart입니다.

    4. 완료를 클릭하여 서비스 계정 만들기를 마칩니다.

      브라우저 창을 닫지 마세요. 다음 단계에서 사용합니다.

  13. 서비스 계정 키 만들기

    1. Cloud Console에서 만든 서비스 계정의 이메일 주소를 클릭합니다.
    2. 를 클릭합니다.
    3. 키 추가를 클릭한 후 새 키 만들기를 클릭합니다.
    4. 만들기를 클릭합니다. JSON 키 파일이 컴퓨터에 다운로드됩니다.
    5. 닫기를 클릭합니다.
  14. GOOGLE_APPLICATION_CREDENTIALS 환경 변수를 서비스 계정 키가 포함된 JSON 파일의 경로로 설정합니다. 이 변수는 현재 셸 세션에만 적용되므로, 새 세션을 열 경우, 변수를 다시 설정합니다.

  15. Cloud SDK 설치 및 초기화

클라이언트 라이브러리 설치

Go

go get cloud.google.com/go/videointelligence/apiv1

자바

Node.js

라이브러리를 설치하기 전에 Node.js 개발을 위한 환경이 준비됐는지 확인하세요.

npm install --save @google-cloud/video-intelligence

Python

라이브러리를 설치하기 전에 Python 개발을 위한 환경이 준비됐는지 확인하세요.

pip install --upgrade google-cloud-videointelligence

추가 언어

C#: 클라이언트 라이브러리 페이지의 C# 설정 안내를 따른 후 .NET용 Video Intelligence 참조 문서를 참조하세요.

PHP: 클라이언트 라이브러리 페이지의 PHP 설정 안내를 따른 다음 PHP용 Video Intelligence 참조 문서를 참조하세요.

Ruby: 클라이언트 라이브러리 페이지의 Ruby 설정 안내를 따른 다음 Ruby용 Video Intelligence 참조 문서를 참조하세요.

라벨 인식

이제 Video Intelligence API를 사용하여 동영상 또는 동영상 세그먼트에서 라벨 인식과 같이 정보를 요청할 수 있습니다. 다음 코드를 실행하여 첫 번째 동영상 라벨 인식 요청을 수행하세요.

Go


// Sample video_quickstart uses the Google Cloud Video Intelligence API to label a video.
package main

import (
	"context"
	"fmt"
	"log"

	"github.com/golang/protobuf/ptypes"

	video "cloud.google.com/go/videointelligence/apiv1"
	videopb "google.golang.org/genproto/googleapis/cloud/videointelligence/v1"
)

func main() {
	ctx := context.Background()

	// Creates a client.
	client, err := video.NewClient(ctx)
	if err != nil {
		log.Fatalf("Failed to create client: %v", err)
	}
	defer client.Close()

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		InputUri: "gs://cloud-samples-data/video/cat.mp4",
		Features: []videopb.Feature{
			videopb.Feature_LABEL_DETECTION,
		},
	})
	if err != nil {
		log.Fatalf("Failed to start annotation job: %v", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		log.Fatalf("Failed to annotate: %v", err)
	}

	// Only one video was processed, so get the first result.
	result := resp.GetAnnotationResults()[0]

	for _, annotation := range result.SegmentLabelAnnotations {
		fmt.Printf("Description: %s\n", annotation.Entity.Description)

		for _, category := range annotation.CategoryEntities {
			fmt.Printf("\tCategory: %s\n", category.Description)
		}

		for _, segment := range annotation.Segments {
			start, _ := ptypes.Duration(segment.Segment.StartTimeOffset)
			end, _ := ptypes.Duration(segment.Segment.EndTimeOffset)
			fmt.Printf("\tSegment: %s to %s\n", start, end)
			fmt.Printf("\tConfidence: %v\n", segment.Confidence)
		}
	}
}

자바


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.Entity;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.LabelAnnotation;
import com.google.cloud.videointelligence.v1.LabelSegment;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import java.util.List;

public class QuickstartSample {

  /** Demonstrates using the video intelligence client to detect labels in a video file. */
  public static void main(String[] args) throws Exception {
    // Instantiate a video intelligence client
    try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
      // The Google Cloud Storage path to the video to annotate.
      String gcsUri = "gs://cloud-samples-data/video/cat.mp4";

      // Create an operation that will contain the response when the operation completes.
      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputUri(gcsUri)
              .addFeatures(Feature.LABEL_DETECTION)
              .build();

      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> response =
          client.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");

      List<VideoAnnotationResults> results = response.get().getAnnotationResultsList();
      if (results.isEmpty()) {
        System.out.println("No labels detected in " + gcsUri);
        return;
      }
      for (VideoAnnotationResults result : results) {
        System.out.println("Labels:");
        // get video segment label annotations
        for (LabelAnnotation annotation : result.getSegmentLabelAnnotationsList()) {
          System.out.println(
              "Video label description : " + annotation.getEntity().getDescription());
          // categories
          for (Entity categoryEntity : annotation.getCategoryEntitiesList()) {
            System.out.println("Label Category description : " + categoryEntity.getDescription());
          }
          // segments
          for (LabelSegment segment : annotation.getSegmentsList()) {
            double startTime =
                segment.getSegment().getStartTimeOffset().getSeconds()
                    + segment.getSegment().getStartTimeOffset().getNanos() / 1e9;
            double endTime =
                segment.getSegment().getEndTimeOffset().getSeconds()
                    + segment.getSegment().getEndTimeOffset().getNanos() / 1e9;
            System.out.printf("Segment location : %.3f:%.3f\n", startTime, endTime);
            System.out.println("Confidence : " + segment.getConfidence());
          }
        }
      }
    }
  }
}

Node.js

예시를 실행하기 전에 Node.js 개발 환경이 준비됐는지 확인합니다.

// Imports the Google Cloud Video Intelligence library
const videoIntelligence = require('@google-cloud/video-intelligence');

// Creates a client
const client = new videoIntelligence.VideoIntelligenceServiceClient();

// The GCS uri of the video to analyze
const gcsUri = 'gs://cloud-samples-data/video/cat.mp4';

// Construct request
const request = {
  inputUri: gcsUri,
  features: ['LABEL_DETECTION'],
};

// Execute request
const [operation] = await client.annotateVideo(request);

console.log(
  'Waiting for operation to complete... (this may take a few minutes)'
);

const [operationResult] = await operation.promise();

// Gets annotations for video
const annotations = operationResult.annotationResults[0];

// Gets labels for video from its annotations
const labels = annotations.segmentLabelAnnotations;
labels.forEach(label => {
  console.log(`Label ${label.entity.description} occurs at:`);
  label.segments.forEach(segment => {
    segment = segment.segment;
    if (segment.startTimeOffset.seconds === undefined) {
      segment.startTimeOffset.seconds = 0;
    }
    if (segment.startTimeOffset.nanos === undefined) {
      segment.startTimeOffset.nanos = 0;
    }
    if (segment.endTimeOffset.seconds === undefined) {
      segment.endTimeOffset.seconds = 0;
    }
    if (segment.endTimeOffset.nanos === undefined) {
      segment.endTimeOffset.nanos = 0;
    }
    console.log(
      `\tStart: ${segment.startTimeOffset.seconds}` +
        `.${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
    );
    console.log(
      `\tEnd: ${segment.endTimeOffset.seconds}.` +
        `${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`
    );
  });
});

Python

예시를 실행하기 전에 Python 개발 환경이 준비됐는지 확인합니다.

from google.cloud import videointelligence

video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.Feature.LABEL_DETECTION]
operation = video_client.annotate_video(
    request={
        "features": features,
        "input_uri": "gs://cloud-samples-data/video/cat.mp4",
    }
)
print("\nProcessing video for label annotations:")

result = operation.result(timeout=180)
print("\nFinished processing.")

# first result is retrieved because a single video was processed
segment_labels = result.annotation_results[0].segment_label_annotations
for i, segment_label in enumerate(segment_labels):
    print("Video label description: {}".format(segment_label.entity.description))
    for category_entity in segment_label.category_entities:
        print(
            "\tLabel category description: {}".format(category_entity.description)
        )

    for i, segment in enumerate(segment_label.segments):
        start_time = (
            segment.segment.start_time_offset.seconds
            + segment.segment.start_time_offset.microseconds / 1e6
        )
        end_time = (
            segment.segment.end_time_offset.seconds
            + segment.segment.end_time_offset.microseconds / 1e6
        )
        positions = "{}s to {}s".format(start_time, end_time)
        confidence = segment.confidence
        print("\tSegment {}: {}".format(i, positions))
        print("\tConfidence: {}".format(confidence))
    print("\n")

추가 언어

C#: 클라이언트 라이브러리 페이지의 C# 설정 안내를 따른 후 .NET용 Video Intelligence 참조 문서를 참조하세요.

PHP: 클라이언트 라이브러리 페이지의 PHP 설정 안내를 따른 다음 PHP용 Video Intelligence 참조 문서를 참조하세요.

Ruby: 클라이언트 라이브러리 페이지의 Ruby 설정 안내를 따른 다음 Ruby용 Video Intelligence 참조 문서를 참조하세요.

축하합니다 첫 번째 요청을 Video Intelligence API에 보냈습니다.

어땠나요?

삭제

이 페이지에서 사용한 리소스 비용이 Google Cloud 계정에 청구되지 않도록 하려면 다음 단계를 수행합니다.

  • Cloud Console을 사용하여 필요 없는 프로젝트를 삭제합니다.

다음 단계