장면 변화 감지

장면 변화 분석은 동영상의 장면 변화를 감지합니다.

이 섹션에서는 동영상의 장면 변화를 분석하는 몇 가지 방법을 보여줍니다.

다음은 Google Cloud Storage에 있는 파일에서 동영상 장면 변화 분석을 수행하는 예입니다.

자세한 정보를 알고 싶다면 자세한 Python 가이드를 참조하세요.

REST 및 명령줄

동영상 주석 요청 전송

다음은 videos:annotate 메서드에 POST 요청을 보내는 방법을 보여줍니다. 이 예시에서는 Cloud SDK를 사용하여 프로젝트에 설정된 서비스 계정의 액세스 token을 사용합니다. Cloud SDK 설치, 서비스 계정으로 프로젝트 설정, 액세스 토큰 획득 방법은 Video Intelligence API 빠른 시작을 참조하세요.

아래의 요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • INPUT_URI/var>: a Cloud Storage bucket that contains the file you want to annotate, including the file name. Must start with gs://.

HTTP 메서드 및 URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

JSON 요청 본문:

{
    "inputUri": "INPUT_URI",
    "features": ["SHOT_CHANGE_DETECTION"]
}

요청을 보내려면 다음 옵션 중 하나를 펼칩니다.

다음과 유사한 JSON 응답이 표시됩니다.

응답이 성공하면 Video Intelligence API가 작업의 name을 반환합니다. 위 항목은 이러한 응답의 예시를 보여줍니다. 여기서 project-name는 프로젝트의 이름이고 operation-id는 요청에 대해 생성된 장기 실행 작업의 ID입니다.

  • PROJECT_NUMBER: 프로젝트 수입니다.
  • LOCATION_ID: 주석이 있어야 할 클라우드 리전입니다. 지원되는 클라우드 리전은 us-east1, us-west1, europe-west1, asia-east1입니다. 리전을 지정하지 않으면 동영상 파일 위치를 기준으로 리전이 결정됩니다.
  • OPERATION_ID: 작업을 시작할 때 요청으로 생성되고 응답으로 제공된 장기 실행 작업의 ID로 예를 들면 12345....입니다.

주석 결과 가져오기

작업 결과를 검색하려면 다음 예시에 표시된 것처럼 videos:annotate 호출로부터 반환된 작업 이름을 사용하여 GET 요청을 수행합니다.

아래의 요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • OPERATION_NAME: Video Intelligence API로 반환되는 작업의 이름입니다. 작업 이름은 projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID 형식입니다.

HTTP 메서드 및 URL:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

요청을 보내려면 다음 옵션 중 하나를 펼칩니다.

다음과 유사한 JSON 응답이 표시됩니다.

장면 감지 주석은 shotAnnotations 목록으로 반환됩니다. 참고: done 필드는 값이 True일 경우에만 반환됩니다. 작업이 완료되지 않은 경우에는 응답에 이 필드가 포함되지 않습니다.

주석 결과 다운로드

소스에서 대상 버킷으로 주석을 복사합니다(파일 및 객체 복사 참조).

gsutil cp gcs_uri gs://my-bucket

참고: 사용자가 출력 gcs uri를 제공하면 주석이 해당 gcs uri에 저장됩니다.

Go


func shotChangeURI(w io.Writer, file string) error {
	ctx := context.Background()
	client, err := video.NewClient(ctx)
	if err != nil {
		return err
	}

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		Features: []videopb.Feature{
			videopb.Feature_SHOT_CHANGE_DETECTION,
		},
		InputUri: file,
	})
	if err != nil {
		return err
	}
	resp, err := op.Wait(ctx)
	if err != nil {
		return err
	}

	// A single video was processed. Get the first result.
	result := resp.AnnotationResults[0].ShotAnnotations

	for _, shot := range result {
		start, _ := ptypes.Duration(shot.StartTimeOffset)
		end, _ := ptypes.Duration(shot.EndTimeOffset)

		fmt.Fprintf(w, "Shot: %s to %s\n", start, end)
	}

	return nil
}

자바

// Instantiate a com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient
try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
  // Provide path to file hosted on GCS as "gs://bucket-name/..."
  AnnotateVideoRequest request =
      AnnotateVideoRequest.newBuilder()
          .setInputUri(gcsUri)
          .addFeatures(Feature.SHOT_CHANGE_DETECTION)
          .build();

  // Create an operation that will contain the response when the operation completes.
  OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> response =
      client.annotateVideoAsync(request);

  System.out.println("Waiting for operation to complete...");
  // Print detected shot changes and their location ranges in the analyzed video.
  for (VideoAnnotationResults result : response.get().getAnnotationResultsList()) {
    if (result.getShotAnnotationsCount() > 0) {
      System.out.println("Shots: ");
      for (VideoSegment segment : result.getShotAnnotationsList()) {
        double startTime =
            segment.getStartTimeOffset().getSeconds()
                + segment.getStartTimeOffset().getNanos() / 1e9;
        double endTime =
            segment.getEndTimeOffset().getSeconds()
                + segment.getEndTimeOffset().getNanos() / 1e9;
        System.out.printf("Location: %.3f:%.3f\n", startTime, endTime);
      }
    } else {
      System.out.println("No shot changes detected in " + gcsUri);
    }
  }
}

Node.js

// Imports the Google Cloud Video Intelligence library
const video = require('@google-cloud/video-intelligence').v1;

// Creates a client
const client = new video.VideoIntelligenceServiceClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const gcsUri = 'GCS URI of file to analyze, e.g. gs://my-bucket/my-video.mp4';

const request = {
  inputUri: gcsUri,
  features: ['SHOT_CHANGE_DETECTION'],
};

// Detects camera shot changes
const [operation] = await client.annotateVideo(request);
console.log('Waiting for operation to complete...');
const [operationResult] = await operation.promise();
// Gets shot changes
const shotChanges = operationResult.annotationResults[0].shotAnnotations;
console.log('Shot changes:');

if (shotChanges.length === 1) {
  console.log('The entire video is one shot.');
} else {
  shotChanges.forEach((shot, shotIdx) => {
    console.log(`Scene ${shotIdx} occurs from:`);
    if (shot.startTimeOffset === undefined) {
      shot.startTimeOffset = {};
    }
    if (shot.endTimeOffset === undefined) {
      shot.endTimeOffset = {};
    }
    if (shot.startTimeOffset.seconds === undefined) {
      shot.startTimeOffset.seconds = 0;
    }
    if (shot.startTimeOffset.nanos === undefined) {
      shot.startTimeOffset.nanos = 0;
    }
    if (shot.endTimeOffset.seconds === undefined) {
      shot.endTimeOffset.seconds = 0;
    }
    if (shot.endTimeOffset.nanos === undefined) {
      shot.endTimeOffset.nanos = 0;
    }
    console.log(
      `\tStart: ${shot.startTimeOffset.seconds}` +
        `.${(shot.startTimeOffset.nanos / 1e6).toFixed(0)}s`
    );
    console.log(
      `\tEnd: ${shot.endTimeOffset.seconds}.` +
        `${(shot.endTimeOffset.nanos / 1e6).toFixed(0)}s`
    );
  });
}

Python

Python용 Cloud Video Intelligence API 클라이언트 라이브러리 설치 및 사용에 대한 자세한 내용은 Cloud Video Intelligence API 클라이언트 라이브러리를 참조하세요.
""" Detects camera shot changes. """
video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.Feature.SHOT_CHANGE_DETECTION]
operation = video_client.annotate_video(
    request={"features": features, "input_uri": path}
)
print("\nProcessing video for shot change annotations:")

result = operation.result(timeout=90)
print("\nFinished processing.")

# first result is retrieved because a single video was processed
for i, shot in enumerate(result.annotation_results[0].shot_annotations):
    start_time = (
        shot.start_time_offset.seconds + shot.start_time_offset.microseconds / 1e6
    )
    end_time = (
        shot.end_time_offset.seconds + shot.end_time_offset.microseconds / 1e6
    )
    print("\tShot {}: {} to {}".format(i, start_time, end_time))