A partire dal 29 aprile 2025, i modelli Gemini 1.5 Pro e Gemini 1.5 Flash non sono disponibili nei progetti che non li hanno mai utilizzati, inclusi i nuovi progetti. Per maggiori dettagli, vedi Versioni e ciclo di vita dei modelli.
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Questa pagina elenca i modelli Gemini, i modelli di cui è stato eseguito il deployment autonomo e i modelli con
API gestite su Vertex AI che supportano Vertex AI RAG Engine.
Modelli Gemini
La tabella seguente elenca i modelli Gemini e le relative versioni che
supportano Vertex AI RAG Engine:
I modelli Gemini sottoposti a fine-tuning non sono supportati quando i modelli Gemini utilizzano Vertex AI RAG Engine.
Modelli con deployment autonomo
Vertex AI RAG Engine supporta tutti i modelli in
Model Garden.
Utilizza il motore RAG di Vertex AI con gli endpoint dei modelli aperti di cui hai eseguito il deployment autonomo.
Sostituisci le variabili utilizzate nell'esempio di codice:
PROJECT_ID: il tuo ID progetto.
LOCATION: la regione in cui elaborare la richiesta.
ENDPOINT_ID: il tuo ID endpoint.
# Create a model instance with your self-deployed open model endpointrag_model=GenerativeModel("projects/PROJECT_ID/locations/LOCATION/endpoints/ENDPOINT_ID",tools=[rag_retrieval_tool])
Modelli con API gestite su Vertex AI
I modelli con API gestite su Vertex AI che supportano
Vertex AI RAG Engine includono quanto segue:
Il seguente esempio di codice mostra come utilizzare l'API Gemini
GenerateContent per creare un'istanza del modello generativo. L'ID modello,
/publisher/meta/models/llama-3.1-405B-instruct-maas, si trova nella
scheda del modello.
Sostituisci le variabili utilizzate nell'esempio di codice:
PROJECT_ID: il tuo ID progetto.
LOCATION: la regione in cui elaborare la richiesta.
RAG_RETRIEVAL_TOOL: lo strumento di recupero RAG.
# Create a model instance with Llama 3.1 MaaS endpointrag_model=GenerativeModel("projects/PROJECT_ID/locations/LOCATION/publisher/meta/models/llama-3.1-405B-instruct-maas",tools=RAG_RETRIEVAL_TOOL)
Il seguente esempio di codice mostra come utilizzare l'API ChatCompletions compatibile con OpenAI per generare una risposta del modello.
Sostituisci le variabili utilizzate nell'esempio di codice:
PROJECT_ID: il tuo ID progetto.
LOCATION: la regione in cui elaborare la richiesta.
MODEL_ID: modello LLM per la generazione di contenuti. Ad
esempio, meta/llama-3.1-405b-instruct-maas.
INPUT_PROMPT: il testo inviato all'LLM per la generazione di contenuti. Utilizza un prompt pertinente ai documenti in
Vertex AI Search.
RAG_CORPUS_ID: l'ID della risorsa del corpus RAG.
ROLE: il tuo ruolo.
USER: il tuo nome utente.
CONTENT: i tuoi contenuti.
# Generate a response with Llama 3.1 MaaS endpointresponse=client.chat.completions.create(model="MODEL_ID",messages=[{"ROLE":"USER","content":"CONTENT"}],extra_body={"extra_body":{"google":{"vertex_rag_store":{"rag_resources":{"rag_corpus":"RAG_CORPUS_ID"},"similarity_top_k":10}}}},)
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Difficile da capire","hardToUnderstand","thumb-down"],["Informazioni o codice di esempio errati","incorrectInformationOrSampleCode","thumb-down"],["Mancano le informazioni o gli esempi di cui ho bisogno","missingTheInformationSamplesINeed","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Altra","otherDown","thumb-down"]],["Ultimo aggiornamento 2025-09-04 UTC."],[],[],null,["# Vertex AI RAG Engine supported models\n\n| The [VPC-SC security controls](/vertex-ai/generative-ai/docs/security-controls) and\n| CMEK are supported by Vertex AI RAG Engine. Data residency and AXT security controls aren't\n| supported.\n\nThis page lists Gemini models, self-deployed models, and models with\nmanaged APIs on Vertex AI that support Vertex AI RAG Engine.\n\nGemini models\n-------------\n\nThe following table lists the Gemini models and their versions that\nsupport Vertex AI RAG Engine:\n\n- [Gemini 2.5 Flash-Lite](/vertex-ai/generative-ai/docs/models/gemini/2-5-flash-lite)\n- [Gemini 2.5 Pro](/vertex-ai/generative-ai/docs/models/gemini/2-5-pro)\n- [Gemini 2.5 Flash](/vertex-ai/generative-ai/docs/models/gemini/2-5-flash)\n- [Gemini 2.0 Flash](/vertex-ai/generative-ai/docs/models/gemini/2-0-flash)\n\nFine-tuned Gemini models are unsupported when the Gemini\nmodels use Vertex AI RAG Engine.\n\nSelf-deployed models\n--------------------\n\nVertex AI RAG Engine supports all models in\n[Model Garden](/vertex-ai/generative-ai/docs/model-garden/explore-models).\n\nUse Vertex AI RAG Engine with your self-deployed open model endpoints.\n\nReplace the variables used in the code sample:\n\n- **\u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e**: Your project ID.\n- **\u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e**: The region to process your request.\n- **\u003cvar translate=\"no\"\u003eENDPOINT_ID\u003c/var\u003e**: Your endpoint ID.\n\n # Create a model instance with your self-deployed open model endpoint\n rag_model = GenerativeModel(\n \"projects/\u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e/locations/\u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e/endpoints/\u003cvar translate=\"no\"\u003eENDPOINT_ID\u003c/var\u003e\",\n tools=[rag_retrieval_tool]\n )\n\nModels with managed APIs on Vertex AI\n-------------------------------------\n\nThe models with managed APIs on Vertex AI that support\nVertex AI RAG Engine include the following:\n\n- [Mistral on Vertex AI](/vertex-ai/generative-ai/docs/partner-models/mistral)\n- [Llama 3.1 and 3.2](/vertex-ai/generative-ai/docs/partner-models/llama)\n\nThe following code sample demonstrates how to use the Gemini\n`GenerateContent` API to create a generative model instance. The model ID,\n`/publisher/meta/models/llama-3.1-405B-instruct-maas`, is found in the\n[model card](/vertex-ai/generative-ai/docs/model-garden/explore-models).\n\nReplace the variables used in the code sample:\n\n- **\u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e**: Your project ID.\n- **\u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e**: The region to process your request.\n- **\u003cvar translate=\"no\"\u003eRAG_RETRIEVAL_TOOL\u003c/var\u003e**: Your RAG retrieval tool.\n\n # Create a model instance with Llama 3.1 MaaS endpoint\n rag_model = GenerativeModel(\n \"projects/\u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e/locations/\u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e/publisher/meta/models/llama-3.1-405B-instruct-maas\",\n tools=\u003cvar translate=\"no\"\u003e\u003cspan class=\"devsite-syntax-n\"\u003eRAG_RETRIEVAL_TOOL\u003c/span\u003e\u003c/var\u003e\n )\n\nThe following code sample demonstrates how to use the OpenAI compatible\n`ChatCompletions` API to generate a model response.\n\nReplace the variables used in the code sample:\n\n- **\u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e**: Your project ID.\n- **\u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e**: The region to process your request.\n- **\u003cvar translate=\"no\"\u003eMODEL_ID\u003c/var\u003e** : LLM model for content generation. For example, `meta/llama-3.1-405b-instruct-maas`.\n- **\u003cvar translate=\"no\"\u003eINPUT_PROMPT\u003c/var\u003e**: The text sent to the LLM for content generation. Use a prompt relevant to the documents in Vertex AI Search.\n- **\u003cvar translate=\"no\"\u003eRAG_CORPUS_ID\u003c/var\u003e**: The ID of the RAG corpus resource.\n- **\u003cvar translate=\"no\"\u003eROLE\u003c/var\u003e**: Your role.\n- **\u003cvar translate=\"no\"\u003eUSER\u003c/var\u003e**: Your username.\n- **\u003cvar translate=\"no\"\u003eCONTENT\u003c/var\u003e**: Your content.\n\n # Generate a response with Llama 3.1 MaaS endpoint\n response = client.chat.completions.create(\n model=\"\u003cvar translate=\"no\"\u003eMODEL_ID\u003c/var\u003e\",\n messages=[{\"\u003cvar translate=\"no\"\u003eROLE\u003c/var\u003e\": \"\u003cvar translate=\"no\"\u003eUSER\u003c/var\u003e\", \"content\": \"\u003cvar translate=\"no\"\u003eCONTENT\u003c/var\u003e\"}],\n extra_body={\n \"extra_body\": {\n \"google\": {\n \"vertex_rag_store\": {\n \"rag_resources\": {\n \"rag_corpus\": \"\u003cvar translate=\"no\"\u003eRAG_CORPUS_ID\u003c/var\u003e\"\n },\n \"similarity_top_k\": 10\n }\n }\n }\n },\n )\n\nWhat's next\n-----------\n\n- [Use Embedding models with Vertex AI RAG Engine](/vertex-ai/generative-ai/docs/use-embedding-models)."]]