使用生成模型生成流式传输文本内容
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
此示例演示了如何使用生成模型生成流式格式的文本。
深入探索
如需查看包含此代码示例的详细文档,请参阅以下内容:
代码示例
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["很难理解","hardToUnderstand","thumb-down"],["信息或示例代码不正确","incorrectInformationOrSampleCode","thumb-down"],["没有我需要的信息/示例","missingTheInformationSamplesINeed","thumb-down"],["翻译问题","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],[],[],[],null,["# Generate streaming text content with Generative Model\n\nThis sample demonstrates how to use Generative Models to generate text in a streaming format.\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Generate content with the Gemini API in Vertex AI](/vertex-ai/generative-ai/docs/model-reference/inference)\n\nCode sample\n-----------\n\n### Go\n\n\nBefore trying this sample, follow the Go setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Go API\nreference documentation](/go/docs/reference/cloud.google.com/go/aiplatform/latest/apiv1).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n import (\n \t\"context\"\n \t\"fmt\"\n \t\"io\"\n\n \tgenai \"google.golang.org/genai\"\n )\n\n // generateWithTextStream shows how to generate text stream using a text prompt.\n func generateWithTextStream(w io.Writer) error {\n \tctx := context.Background()\n\n \tclient, err := genai.NewClient(ctx, &genai.ClientConfig{\n \t\tHTTPOptions: genai.HTTPOptions{APIVersion: \"v1\"},\n \t})\n \tif err != nil {\n \t\treturn fmt.Errorf(\"failed to create genai client: %w\", err)\n \t}\n\n \tmodelName := \"gemini-2.5-flash\"\n \tcontents := genai.Text(\"Why is the sky blue?\")\n\n \tfor resp, err := range client.Models.GenerateContentStream(ctx, modelName, contents, nil) {\n \t\tif err != nil {\n \t\t\treturn fmt.Errorf(\"failed to generate content: %w\", err)\n \t\t}\n\n \t\tchunk := resp.Text()\n\n \t\tfmt.Fprintln(w, chunk)\n \t}\n\n \t// Example response:\n \t// The\n \t// sky is blue\n \t// because of a phenomenon called **Rayleigh scattering**. Here's the breakdown:\n \t// ...\n\n \treturn nil\n }\n\n### Node.js\n\n\nBefore trying this sample, follow the Node.js setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Node.js API\nreference documentation](/nodejs/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n const {GoogleGenAI} = require('@google/genai');\n\n const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;\n const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';\n\n async function generateContent(\n projectId = GOOGLE_CLOUD_PROJECT,\n location = GOOGLE_CLOUD_LOCATION\n ) {\n const ai = new GoogleGenAI({\n vertexai: true,\n project: projectId,\n location: location,\n });\n\n const response = await ai.models.generateContentStream({\n model: 'gemini-2.5-flash',\n contents: 'Why is the sky blue?',\n });\n\n let response_text = '';\n for await (const chunk of response) {\n response_text += chunk.text;\n console.log(chunk.text);\n }\n return response_text;\n }\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from google import genai\n from google.genai.types import HttpOptions\n\n client = genai.Client(http_options=HttpOptions(api_version=\"v1\"))\n\n for chunk in client.models.generate_content_stream(\n model=\"gemini-2.5-flash\",\n contents=\"Why is the sky blue?\",\n ):\n print(chunk.text, end=\"\")\n # Example response:\n # The\n # sky appears blue due to a phenomenon called **Rayleigh scattering**. Here's\n # a breakdown of why:\n # ...\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=googlegenaisdk)."]]