Use Gemini to summarize YouTube videos

This sample demonstrates how to use Gemini to summarize YouTube videos.

Code sample

Go

Before trying this sample, follow the Go setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Go API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// generateWithYTVideo shows how to generate text using a YouTube video as input.
func generateWithYTVideo(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "Write a short and engaging blog post based on this video."},
			{FileData: &genai.FileData{
				FileURI:  "https://www.youtube.com/watch?v=3KtWfp0UopM",
				MIMEType: "video/mp4",
			}},
		},
			Role: "user"},
	}

	resp, err := client.Models.GenerateContent(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	respText := resp.Text()

	fmt.Fprintln(w, respText)

	// Example response:
	// Okay, here’s a short and engaging blog post based on the provided video.
	//
	// **Google's 25th: A Look Back at What We've Searched**
	// ...

	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Java API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.


import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;

public class TextGenerationWithYoutubeVideo {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    generateContent(modelId);
  }

  // Generates text with YouTube video input
  public static String generateContent(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              Content.fromParts(
                  Part.fromUri("https://www.youtube.com/watch?v=3KtWfp0UopM", "video/mp4"),
                  Part.fromText("Write a short and engaging blog post based on this video.")),
              null);

      System.out.print(response.text());
      // Example response:
      // 25 Years of Curiosity: A Google Anniversary Dive into What the World Searched For
      //
      // Remember a time before instant answers were just a click away? 25 years ago, Google
      // launched, unleashing a wave of curiosity that has since charted the collective interests,
      // anxieties, and celebrations of humanity...
      return response.text();
    }
  }
}

Python

Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Python API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

from google import genai
from google.genai.types import HttpOptions, Part

client = genai.Client(http_options=HttpOptions(api_version="v1"))
model_id = "gemini-2.5-flash"

response = client.models.generate_content(
    model=model_id,
    contents=[
        Part.from_uri(
            file_uri="https://www.youtube.com/watch?v=3KtWfp0UopM",
            mime_type="video/mp4",
        ),
        "Write a short and engaging blog post based on this video.",
    ],
)

print(response.text)
# Example response:
# Here's a short blog post based on the video provided:
#
# **Google Turns 25: A Quarter Century of Search!**
# ...

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.