使用 Gemini 处理 PDF 文件
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
此示例展示了如何使用 Gemini 处理 PDF 文档。
深入探索
如需查看包含此代码示例的详细文档,请参阅以下内容:
代码示例
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["很难理解","hardToUnderstand","thumb-down"],["信息或示例代码不正确","incorrectInformationOrSampleCode","thumb-down"],["没有我需要的信息/示例","missingTheInformationSamplesINeed","thumb-down"],["翻译问题","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],[],[],[],null,["# Process a PDF file with Gemini\n\nThis sample shows you how to process a PDF document using Gemini.\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Document understanding](/vertex-ai/generative-ai/docs/multimodal/document-understanding)\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from google import genai\n from google.genai.types import HttpOptions, Part\n\n client = genai.Client(http_options=HttpOptions(api_version=\"v1\"))\n model_id = \"gemini-2.5-flash\"\n\n prompt = \"\"\"\n You are a highly skilled document summarization specialist.\n Your task is to provide a concise executive summary of no more than 300 words.\n Please summarize the given document for a general audience.\n \"\"\"\n\n pdf_file = Part.from_uri(\n file_uri=\"gs://cloud-samples-data/generative-ai/pdf/1706.03762v7.pdf\",\n mime_type=\"application/pdf\",\n )\n\n response = client.models.generate_content(\n model=model_id,\n contents=[pdf_file, prompt],\n )\n\n print(response.text)\n # Example response:\n # Here is a summary of the document in 300 words.\n #\n # The paper introduces the Transformer, a novel neural network architecture for\n # sequence transduction tasks like machine translation. Unlike existing models that rely on recurrent or\n # convolutional layers, the Transformer is based entirely on attention mechanisms.\n # ...\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=googlegenaisdk)."]]