PDF-Datei mit Gemini verarbeiten
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
In diesem Beispiel wird gezeigt, wie Sie ein PDF-Dokument mit Gemini verarbeiten.
Weitere Informationen
Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:
Codebeispiel
Nächste Schritte
Wenn Sie nach Codebeispielen für andere Google Cloud -Produkte suchen und filtern möchten, können Sie den Google Cloud -Beispielbrowser verwenden.
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Schwer verständlich","hardToUnderstand","thumb-down"],["Informationen oder Beispielcode falsch","incorrectInformationOrSampleCode","thumb-down"],["Benötigte Informationen/Beispiele nicht gefunden","missingTheInformationSamplesINeed","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],[],[],[],null,["# Process a PDF file with Gemini\n\nThis sample shows you how to process a PDF document using Gemini.\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Document understanding](/vertex-ai/generative-ai/docs/multimodal/document-understanding)\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from google import genai\n from google.genai.types import HttpOptions, Part\n\n client = genai.Client(http_options=HttpOptions(api_version=\"v1\"))\n model_id = \"gemini-2.5-flash\"\n\n prompt = \"\"\"\n You are a highly skilled document summarization specialist.\n Your task is to provide a concise executive summary of no more than 300 words.\n Please summarize the given document for a general audience.\n \"\"\"\n\n pdf_file = Part.from_uri(\n file_uri=\"gs://cloud-samples-data/generative-ai/pdf/1706.03762v7.pdf\",\n mime_type=\"application/pdf\",\n )\n\n response = client.models.generate_content(\n model=model_id,\n contents=[pdf_file, prompt],\n )\n\n print(response.text)\n # Example response:\n # Here is a summary of the document in 300 words.\n #\n # The paper introduces the Transformer, a novel neural network architecture for\n # sequence transduction tasks like machine translation. Unlike existing models that rely on recurrent or\n # convolutional layers, the Transformer is based entirely on attention mechanisms.\n # ...\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=googlegenaisdk)."]]