Mit Gemini eine lokale Videodatei zusammenfassen
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
In diesem Beispiel wird gezeigt, wie Sie mit Gemini eine lokale Videodatei zusammenfassen.
Codebeispiel
Nächste Schritte
Wenn Sie nach Codebeispielen für andere Google Cloud -Produkte suchen und filtern möchten, können Sie den Google Cloud -Beispielbrowser verwenden.
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Schwer verständlich","hardToUnderstand","thumb-down"],["Informationen oder Beispielcode falsch","incorrectInformationOrSampleCode","thumb-down"],["Benötigte Informationen/Beispiele nicht gefunden","missingTheInformationSamplesINeed","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],[],[],[],null,["# Use Gemini to summarize local video file\n\nThis sample demonstrates how to use Gemini to summarize a local video file.\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from google import genai\n from google.genai.types import HttpOptions, Part\n\n client = genai.Client(http_options=HttpOptions(api_version=\"v1\"))\n model_id = \"gemini-2.5-flash\"\n\n # Read local video file content\n with open(\"test_data/describe_video_content.mp4\", \"rb\") as fp:\n # Video source: https://storage.googleapis.com/cloud-samples-data/generative-ai/video/describe_video_content.mp4\n video_content = fp.read()\n\n response = client.models.generate_content(\n model=model_id,\n contents=[\n Part.from_text(text=\"hello-world\"),\n Part.from_bytes(data=video_content, mime_type=\"video/mp4\"),\n \"Write a short and engaging blog post based on this video.\",\n ],\n )\n\n print(response.text)\n # Example response:\n # Okay, here's a short and engaging blog post based on the climbing video:\n # **Title: Conquering the Wall: A Glimpse into the World of Indoor Climbing**\n # ...\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=googlegenaisdk)."]]