マルチモーダル AI モデルでコンテンツ ストリーミングを生成する
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
このコードサンプルでは、生成 AI モデルを使用して、動画、画像、テキストの入力を組み合わせて、ストリーミング形式でテキストを生成する方法を示します。
もっと見る
このコードサンプルを含む詳細なドキュメントについては、以下をご覧ください。
コードサンプル
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["わかりにくい","hardToUnderstand","thumb-down"],["情報またはサンプルコードが不正確","incorrectInformationOrSampleCode","thumb-down"],["必要な情報 / サンプルがない","missingTheInformationSamplesINeed","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["その他","otherDown","thumb-down"]],[],[],[],null,["# Generate content stream with Multimodal AI Model\n\nThe code sample demonstrates how to use Generative AI Models to generate text in a streaming format based on a combination of video, image, and text inputs.\n\nCode sample\n-----------\n\n### Go\n\n\nBefore trying this sample, follow the Go setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Go API\nreference documentation](/go/docs/reference/cloud.google.com/go/aiplatform/latest/apiv1).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n import (\n \t\"context\"\n \t\"errors\"\n \t\"fmt\"\n \t\"io\"\n\n \t\"cloud.google.com/go/vertexai/genai\"\n \t\"google.golang.org/api/iterator\"\n )\n\n func generateContent(w io.Writer, projectID, modelName string) error {\n \tctx := context.Background()\n\n \tclient, err := genai.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/go/latest/genai.html#cloud_google_com_go_vertexai_genai_Client_NewClient(ctx, projectID, \"us-central1\")\n \tif err != nil {\n \t\treturn fmt.Errorf(\"unable to create client: %w\", err)\n \t}\n \tdefer client.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/go/latest/genai.html#cloud_google_com_go_vertexai_genai_Client_Close()\n\n \tmodel := client.GenerativeModel(modelName)\n \titer := model.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/go/latest/genai.html#cloud_google_com_go_vertexai_genai_GenerativeModel_GenerateContentStream(\n \t\tctx,\n \t\tgenai.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/go/latest/genai.html#cloud_google_com_go_vertexai_genai_FileData{\n \t\t\tMIMEType: \"video/mp4\",\n \t\t\tFileURI: \"gs://cloud-samples-data/generative-ai/video/animals.mp4\",\n \t\t},\n \t\tgenai.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/go/latest/genai.html#cloud_google_com_go_vertexai_genai_FileData{\n \t\t\tMIMEType: \"video/jpeg\",\n \t\t\tFileURI: \"gs://cloud-samples-data/generative-ai/image/character.jpg\",\n \t\t},\n \t\tgenai.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/go/latest/genai.html#cloud_google_com_go_vertexai_genai_Text(\"Are these video and image correlated?\"),\n \t)\n \tfor {\n \t\tresp, err := iter.Next()\n \t\tif err == iterator.Done {\n \t\t\treturn nil\n \t\t}\n \t\tif len(resp.Candidates) == 0 || len(resp.Candidates[0].https://cloud.google.com/vertex-ai/generative-ai/docs/reference/go/latest/genai.html#cloud_google_com_go_vertexai_genai_Content.Parts) == 0 {\n \t\t\treturn errors.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/go/latest/genai/tokenizer.html#cloud_google_com_go_vertexai_genai_tokenizer_Tokenizer_New(\"empty response from model\")\n \t\t}\n \t\tif err != nil {\n \t\t\treturn err\n \t\t}\n\n \t\tfmt.Fprint(w, \"generated response: \")\n \t\tfor _, c := range resp.Candidates {\n \t\t\tfor _, p := range c.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/go/latest/genai.html#cloud_google_com_go_vertexai_genai_Content.Parts {\n \t\t\t\tfmt.Fprintf(w, \"%s \", p)\n \t\t\t}\n \t\t}\n \t\tfmt.Fprint(w, \"\\n\")\n \t}\n }\n\n### Java\n\n\nBefore trying this sample, follow the Java setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Java API\nreference documentation](/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n import com.google.cloud.vertexai.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.VertexAI.html;\n import com.google.cloud.vertexai.generativeai.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.generativeai.ContentMaker.html;\n import com.google.cloud.vertexai.generativeai.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.generativeai.GenerativeModel.html;\n import com.google.cloud.vertexai.generativeai.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.generativeai.PartMaker.html;\n\n public class StreamingMultimodal {\n public static void main(String[] args) throws Exception {\n // TODO(developer): Replace these variables before running the sample.\n String projectId = \"your-google-cloud-project-id\";\n String location = \"us-central1\";\n String modelName = \"gemini-2.0-flash-001\";\n\n streamingMultimodal(projectId, location, modelName);\n }\n\n // Ask a simple question and get the response via streaming.\n public static void streamingMultimodal(String projectId, String location, String modelName)\n throws Exception {\n // Initialize client that will be used to send requests.\n // This client only needs to be created once, and can be reused for multiple requests.\n try (https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.VertexAI.html vertexAI = new https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.VertexAI.html(projectId, location)) {\n https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.generativeai.GenerativeModel.html model = new https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.generativeai.GenerativeModel.html(modelName, vertexAI);\n\n String videoUri = \"gs://cloud-samples-data/video/animals.mp4\";\n String imgUri = \"gs://cloud-samples-data/generative-ai/image/character.jpg\";\n\n // Stream the result.\n model.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.generativeai.GenerativeModel.html#com_google_cloud_vertexai_generativeai_GenerativeModel_generateContentStream_com_google_cloud_vertexai_api_Content_(\n ContentMaker.fromMultiModalData(\n PartMaker.fromMimeTypeAndData(\"video/mp4\", videoUri),\n PartMaker.fromMimeTypeAndData(\"image/jpeg\", imgUri),\n \"Are this video and image correlated?\"\n ))\n .stream()\n .forEach(System.out::println);\n }\n }\n }\n\n### Node.js\n\n\nBefore trying this sample, follow the Node.js setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Node.js API\nreference documentation](/nodejs/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n const {VertexAI} = require('https://cloud.google.com/nodejs/docs/reference/vertexai/latest/overview.html');\n\n /**\n * TODO(developer): Update these variables before running the sample.\n */\n const PROJECT_ID = process.env.CAIP_PROJECT_ID;\n const LOCATION = process.env.LOCATION;\n const MODEL = 'gemini-2.0-flash-001';\n\n async function generateContent() {\n // Initialize Vertex AI\n const vertexAI = new https://cloud.google.com/nodejs/docs/reference/vertexai/latest/vertexai/vertexai.html({project: PROJECT_ID, location: LOCATION});\n const generativeModel = vertexAI.https://cloud.google.com/nodejs/docs/reference/vertexai/latest/vertexai/vertexai.html({model: MODEL});\n\n const request = {\n contents: [\n {\n role: 'user',\n parts: [\n {\n file_data: {\n file_uri: 'gs://cloud-samples-data/video/animals.mp4',\n mime_type: 'video/mp4',\n },\n },\n {\n file_data: {\n file_uri:\n 'gs://cloud-samples-data/generative-ai/image/character.jpg',\n mime_type: 'image/jpeg',\n },\n },\n {text: 'Are this video and image correlated?'},\n ],\n },\n ],\n };\n\n const result = await generativeModel.generateContentStream(request);\n\n for await (const item of result.https://cloud.google.com/nodejs/docs/reference/vertexai/latest/vertexai/streamgeneratecontentresult.html) {\n console.log(item.https://cloud.google.com/nodejs/docs/reference/vertexai/latest/vertexai/generatecontentresponse.html[0].https://cloud.google.com/nodejs/docs/reference/vertexai/latest/vertexai/generatecontentcandidate.html.https://cloud.google.com/nodejs/docs/reference/vertexai/latest/vertexai/content.html[0].text);\n }\n }\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=generativeaionvertexai)."]]