Prompts für die Textgenerierung mit Vertex AI optimieren

In diesem Beispiel wird gezeigt, wie Sie mit dem Vertex AI Prompt Optimizer Prompts für ein Modell zur Textgenerierung optimieren.

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

Python

Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

from google.cloud import aiplatform

# Initialize Vertex AI platform
aiplatform.init(project=PROJECT_ID, location="us-central1")

# TODO(Developer): Check and update lines below
# cloud_bucket = "gs://cloud-samples-data"
# config_path = f"{cloud_bucket}/instructions/sample_configuration.json"
# output_path = "custom_job/output/"

custom_job = aiplatform.CustomJob(
    display_name="Prompt Optimizer example",
    worker_pool_specs=[
        {
            "replica_count": 1,
            "container_spec": {
                "image_uri": "us-docker.pkg.dev/vertex-ai-restricted/builtin-algorithm/apd:preview_v1_0",
                "args": [f"--config={cloud_bucket}/{config_path}"],
            },
            "machine_spec": {
                "machine_type": "n1-standard-4",
            },
        }
    ],
    staging_bucket=cloud_bucket,
    base_output_dir=f"{cloud_bucket}/{output_path}",
)

custom_job.submit()
print(f"Job resource name: {custom_job.resource_name}")
# Example response:
#    'projects/123412341234/locations/us-central1/customJobs/12341234123412341234'

Nächste Schritte

Wenn Sie nach Codebeispielen für andere Google Cloud -Produkte suchen und filtern möchten, können Sie den Google Cloud -Beispielbrowser verwenden.