Mit generativer KI Inhalte aus multimodalen Daten generieren
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
In diesem Beispiel wird gezeigt, wie Inhalte aus einer Kombination aus Text, Bild und Video generiert werden können.
Codebeispiel
Nächste Schritte
Wenn Sie nach Codebeispielen für andere Google Cloud -Produkte suchen und filtern möchten, können Sie den Google Cloud -Beispielbrowser verwenden.
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Schwer verständlich","hardToUnderstand","thumb-down"],["Informationen oder Beispielcode falsch","incorrectInformationOrSampleCode","thumb-down"],["Benötigte Informationen/Beispiele nicht gefunden","missingTheInformationSamplesINeed","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],[],[],[],null,["# Generate content from multimodal data using Generative AI\n\nThis sample demonstrates the capability to generate content from a combination of text, image, and video.\n\nCode sample\n-----------\n\n### Java\n\n\nBefore trying this sample, follow the Java setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Java API\nreference documentation](/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n import com.google.cloud.vertexai.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.VertexAI.html;\n import com.google.cloud.vertexai.api.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.api.GenerateContentResponse.html;\n import com.google.cloud.vertexai.generativeai.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.generativeai.ContentMaker.html;\n import com.google.cloud.vertexai.generativeai.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.generativeai.GenerativeModel.html;\n import com.google.cloud.vertexai.generativeai.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.generativeai.PartMaker.html;\n import com.google.cloud.vertexai.generativeai.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.generativeai.ResponseHandler.html;\n\n public class Multimodal {\n public static void main(String[] args) throws Exception {\n // TODO(developer): Replace these variables before running the sample.\n String projectId = \"your-google-cloud-project-id\";\n String location = \"us-central1\";\n String modelName = \"gemini-2.0-flash-001\";\n\n String output = nonStreamingMultimodal(projectId, location, modelName);\n System.out.println(output);\n }\n\n // Ask a simple question and get the response.\n public static String nonStreamingMultimodal(String projectId, String location, String modelName)\n throws Exception {\n // Initialize client that will be used to send requests.\n // This client only needs to be created once, and can be reused for multiple requests.\n try (https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.VertexAI.html vertexAI = new https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.VertexAI.html(projectId, location)) {\n https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.generativeai.GenerativeModel.html model = new https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.generativeai.GenerativeModel.html(modelName, vertexAI);\n\n String videoUri = \"gs://cloud-samples-data/video/animals.mp4\";\n String imgUri = \"gs://cloud-samples-data/generative-ai/image/character.jpg\";\n\n // Get the response from the model.\n https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.api.GenerateContentResponse.html response = model.https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.generativeai.GenerativeModel.html#com_google_cloud_vertexai_generativeai_GenerativeModel_generateContent_com_google_cloud_vertexai_api_Content_(\n ContentMaker.fromMultiModalData(\n PartMaker.fromMimeTypeAndData(\"video/mp4\", videoUri),\n PartMaker.fromMimeTypeAndData(\"image/jpeg\", imgUri),\n \"Are this video and image correlated?\"\n ));\n\n // Extract the generated text from the model's response.\n String output = https://cloud.google.com/vertex-ai/generative-ai/docs/reference/java/latest/com.google.cloud.vertexai.generativeai.ResponseHandler.html.getText(response);\n return output;\n }\n }\n }\n\n### Node.js\n\n\nBefore trying this sample, follow the Node.js setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Node.js API\nreference documentation](/nodejs/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n const {VertexAI} = require('https://cloud.google.com/nodejs/docs/reference/vertexai/latest/overview.html');\n\n /**\n * TODO(developer): Update these variables before running the sample.\n */\n const PROJECT_ID = process.env.CAIP_PROJECT_ID;\n const LOCATION = 'us-central1';\n const MODEL = 'gemini-2.0-flash-001';\n\n async function generateContent() {\n // Initialize Vertex AI\n const vertexAI = new https://cloud.google.com/nodejs/docs/reference/vertexai/latest/vertexai/vertexai.html({project: PROJECT_ID, location: LOCATION});\n const generativeModel = vertexAI.https://cloud.google.com/nodejs/docs/reference/vertexai/latest/vertexai/vertexai.html({model: MODEL});\n\n const request = {\n contents: [\n {\n role: 'user',\n parts: [\n {\n file_data: {\n file_uri: 'gs://cloud-samples-data/video/animals.mp4',\n mime_type: 'video/mp4',\n },\n },\n {\n file_data: {\n file_uri:\n 'gs://cloud-samples-data/generative-ai/image/character.jpg',\n mime_type: 'image/jpeg',\n },\n },\n {text: 'Are this video and image correlated?'},\n ],\n },\n ],\n };\n\n const result = await generativeModel.generateContent(request);\n\n console.log(result.response.https://cloud.google.com/nodejs/docs/reference/vertexai/latest/vertexai/generatecontentresponse.html[0].https://cloud.google.com/nodejs/docs/reference/vertexai/latest/vertexai/generatecontentcandidate.html.https://cloud.google.com/nodejs/docs/reference/vertexai/latest/vertexai/content.html[0].text);\n }\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=generativeaionvertexai)."]]