Genera una imagen a partir de texto

En este ejemplo, se muestra cómo usar el modelo Imagen para generar una imagen a partir de texto.

Muestra de código

C#

Antes de probar este ejemplo, sigue las instrucciones de configuración para C# incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI C#.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


using Google.Cloud.AIPlatform.V1;
using System;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Value = Google.Protobuf.WellKnownTypes.Value;

public class GenerateImage
{
    public async Task<FileInfo> Generate(
        string projectId = "your-project-id")
    {
        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = "us-central1-aiplatform.googleapis.com"
        }.Build();


        string prompt = "a dog reading a newspaper";
        string outputFileName = "dog_newspaper.png";
        string model = "imagegeneration@006";

        var predictRequest = new PredictRequest
        {
            EndpointAsEndpointName = EndpointName.FromProjectLocationPublisherModel(projectId, "us-central1", "google", model),
            Instances =
            {
                Value.ForStruct(new()
                {
                    Fields =
                    {
                        ["prompt"] = Value.ForString(prompt)
                    }
                })
            },
            Parameters = Value.ForStruct(new()
            {
                Fields =
                {
                    ["sampleCount"] = Value.ForNumber(1)
                }
            })
        };

        PredictResponse response = await predictionServiceClient.PredictAsync(predictRequest);
        byte[] imageBytes = Convert.FromBase64String(response.Predictions.First().StructValue.Fields["bytesBase64Encoded"].StringValue);

        File.WriteAllBytes(outputFileName, imageBytes);
        FileInfo fileInfo = new FileInfo(Path.GetFullPath(outputFileName));

        Console.WriteLine($"Created output image {fileInfo.FullName} with {fileInfo.Length} bytes");
        return fileInfo;
    }
}

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Java.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


import com.google.api.gax.rpc.ApiException;
import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.gson.Gson;
import com.google.protobuf.InvalidProtocolBufferException;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.Base64;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

public class GenerateImageSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "my-project-id";
    String location = "us-central1";
    String prompt = ""; // The text prompt describing what you want to see.

    generateImage(projectId, location, prompt);
  }

  // Generate an image using a text prompt using an Imagen model
  public static PredictResponse generateImage(String projectId, String location, String prompt)
      throws ApiException, IOException {
    final String endpoint = String.format("%s-aiplatform.googleapis.com:443", location);
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {

      final EndpointName endpointName =
          EndpointName.ofProjectLocationPublisherModelName(
              projectId, location, "google", "imagen-3.0-generate-001");

      Map<String, Object> instancesMap = new HashMap<>();
      instancesMap.put("prompt", prompt);
      Value instances = mapToValue(instancesMap);

      Map<String, Object> paramsMap = new HashMap<>();
      paramsMap.put("sampleCount", 1);
      // You can't use a seed value and watermark at the same time.
      // paramsMap.put("seed", 100);
      // paramsMap.put("addWatermark", false);
      paramsMap.put("aspectRatio", "1:1");
      paramsMap.put("safetyFilterLevel", "block_some");
      paramsMap.put("personGeneration", "allow_adult");
      Value parameters = mapToValue(paramsMap);

      PredictResponse predictResponse =
          predictionServiceClient.predict(
              endpointName, Collections.singletonList(instances), parameters);

      for (Value prediction : predictResponse.getPredictionsList()) {
        Map<String, Value> fieldsMap = prediction.getStructValue().getFieldsMap();
        if (fieldsMap.containsKey("bytesBase64Encoded")) {
          String bytesBase64Encoded = fieldsMap.get("bytesBase64Encoded").getStringValue();
          Path tmpPath = Files.createTempFile("imagen-", ".png");
          Files.write(tmpPath, Base64.getDecoder().decode(bytesBase64Encoded));
          System.out.format("Image file written to: %s\n", tmpPath.toUri());
        }
      }
      return predictResponse;
    }
  }

  private static Value mapToValue(Map<String, Object> map) throws InvalidProtocolBufferException {
    Gson gson = new Gson();
    String json = gson.toJson(map);
    Value.Builder builder = Value.newBuilder();
    JsonFormat.parser().merge(json, builder);
    return builder.build();
  }
}

Node.js

Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Node.js.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

/**
 * TODO(developer): Update these variables before running the sample.
 */
const projectId = process.env.CAIP_PROJECT_ID;
const outputFile = 'my-output';
const prompt = 'a dog reading a newspaper'; // The text prompt describing what you want to see
const location = 'us-central1';

const aiplatform = require('@google-cloud/aiplatform');

// Imports the Google Cloud Prediction Service Client library
const {PredictionServiceClient} = aiplatform.v1;

// Import the helper module for converting arbitrary protobuf.Value objects
const {helpers} = aiplatform;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: `${location}-aiplatform.googleapis.com`,
};

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

const fs = require('fs');
const util = require('util');

async function generateImage() {
  // Configure the parent resource
  const endpoint = `projects/${projectId}/locations/${location}/publishers/google/models/imagen-3.0-generate-001`;

  const promptText = {
    prompt: prompt,
  };
  const instanceValue = helpers.toValue(promptText);
  const instances = [instanceValue];

  const parameter = {
    sampleCount: 1,
    // You can't use a seed value and watermark at the same time.
    // seed: 100,
    // addWatermark: false,
    aspectRatio: '1:1',
    safetyFilterLevel: 'block_some',
    personGeneration: 'allow_adult',
  };
  const parameters = helpers.toValue(parameter);

  const request = {
    endpoint,
    instances,
    parameters,
  };

  // Predict request
  const [response] = await predictionServiceClient.predict(request);
  const predictions = response.predictions;
  if (predictions.length === 0) {
    console.log(
      'No image was generated. Check the request parameters and prompt.'
    );
  } else {
    let i = 1;
    for (const prediction of predictions) {
      const buff = Buffer.from(
        prediction.structValue.fields.bytesBase64Encoded.stringValue,
        'base64'
      );
      // Write image content to the output file
      const writeFile = util.promisify(fs.writeFile);
      const filename = `${outputFile}${i}.png`;
      await writeFile(filename, buff);
      console.log(`Saved image ${filename}`);
      i++;
    }
  }
}
await generateImage();

Python

Antes de probar este ejemplo, sigue las instrucciones de configuración para Python incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Python.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


import vertexai
from vertexai.preview.vision_models import ImageGenerationModel

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# output_file = "input-image.png"
# prompt = "" # The text prompt describing what you want to see.

vertexai.init(project=PROJECT_ID, location="us-central1")

model = ImageGenerationModel.from_pretrained("imagen-3.0-generate-001")

images = model.generate_images(
    prompt=prompt,
    # Optional parameters
    number_of_images=1,
    language="en",
    # You can't use a seed value and watermark at the same time.
    # add_watermark=False,
    # seed=100,
    aspect_ratio="1:1",
    safety_filter_level="block_some",
    person_generation="allow_adult",
)

images[0].save(location=output_file, include_generation_parameters=False)

# Optional. View the generated image in a notebook.
# images[0].show()

print(f"Created output image using {len(images[0]._image_bytes)} bytes")
# Example response:
# Created output image using 1234567 bytes

¿Qué sigue?

Para buscar y filtrar muestras de código para otros productos de Google Cloud, consulta el navegador de muestra de Google Cloud.