Text mit einem Kontext-Cache generieren

Text mithilfe eines vorhandenen Kontext-Caches generieren.

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

C#

Bevor Sie dieses Beispiel anwenden, folgen Sie den C#-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI C# API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


using Google.Cloud.AIPlatform.V1Beta1;
using System;
using System.Threading.Tasks;

public class UseContextCache
{
    public async Task<string> Use(string projectId, CachedContentName name)
    {
        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"us-central1-aiplatform.googleapis.com"
        }.Build();

        var generateContentRequest = new GenerateContentRequest
        {
            CachedContentAsCachedContentName = name,
            Model = $"projects/{projectId}/locations/us-central1/publishers/google/models/gemini-1.5-pro-001",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = "What are the papers about?" },
                    }
                }
            }
        };

        GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

        string responseText = response.Candidates[0].Content.Parts[0].Text;
        Console.WriteLine($"Response: {responseText}");

        return responseText;
    }
}

Go

Bevor Sie dieses Beispiel anwenden, folgen Sie den Go-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Go API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import (
	"context"
	"errors"
	"fmt"
	"io"

	"cloud.google.com/go/vertexai/genai"
)

// useContextCache shows how to use an existing cached content, when prompting the model
// contentName is the ID of the cached content
func useContextCache(w io.Writer, contentName string, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-pro-001"
	ctx := context.Background()

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)
	model.CachedContentName = contentName
	prompt := genai.Text("What are the papers about?")

	res, err := model.GenerateContent(ctx, prompt)
	if err != nil {
		return fmt.Errorf("error generating content: %w", err)
	}

	if len(res.Candidates) == 0 ||
		len(res.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	fmt.Fprintf(w, "generated response: %s\n", res.Candidates[0].Content.Parts[0])
	return nil
}

Python

Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import vertexai

from vertexai.preview.generative_models import GenerativeModel
from vertexai.preview import caching

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# cache_id = "your-cache-id"

vertexai.init(project=PROJECT_ID, location="us-central1")

cached_content = caching.CachedContent(cached_content_name=cache_id)

model = GenerativeModel.from_cached_content(cached_content=cached_content)

response = model.generate_content("What are the papers about?")

print(response.text)
# Example response:
# The provided text is about a new family of multimodal models called Gemini, developed by Google.
# ...

Nächste Schritte

Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud -Produkte finden Sie im Google Cloud Beispielbrowser.