Gemini로 PDF 파일 처리
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
이 샘플은 Gemini를 사용하여 PDF 문서를 처리하는 방법을 보여줍니다.
더 살펴보기
이 코드 샘플이 포함된 자세한 문서는 다음을 참조하세요.
코드 샘플
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["이해하기 어려움","hardToUnderstand","thumb-down"],["잘못된 정보 또는 샘플 코드","incorrectInformationOrSampleCode","thumb-down"],["필요한 정보/샘플이 없음","missingTheInformationSamplesINeed","thumb-down"],["번역 문제","translationIssue","thumb-down"],["기타","otherDown","thumb-down"]],[],[],[],null,["# Process a PDF file with Gemini\n\nThis sample shows you how to process a PDF document using Gemini.\n\nCode sample\n-----------\n\n### C#\n\n\nBefore trying this sample, follow the C# setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI C# API\nreference documentation](/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n\n using https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.html;\n using System;\n using System.Threading.Tasks;\n\n public class PdfInput\n {\n public async Task\u003cstring\u003e SummarizePdf(\n string projectId = \"your-project-id\",\n string location = \"us-central1\",\n string publisher = \"google\",\n string model = \"gemini-2.0-flash-001\")\n {\n\n var predictionServiceClient = new https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.PredictionServiceClientBuilder.html\n {\n Endpoint = $\"{location}-aiplatform.googleapis.com\"\n }.Build();\n\n string prompt = @\"You are a very professional document summarization specialist.\n Please summarize the given document.\";\n\n var generateContentRequest = new https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.GenerateContentRequest.html\n {\n Model = $\"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}\",\n Contents =\n {\n new https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.Content.html\n {\n Role = \"USER\",\n Parts =\n {\n new https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.Part.html { Text = prompt },\n new https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.Part.html { FileData = new() { MimeType = \"application/pdf\", FileUri = \"gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf\" }}\n }\n }\n }\n };\n\n https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.GenerateContentResponse.html response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);\n\n string responseText = response.https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.GenerateContentResponse.html#Google_Cloud_AIPlatform_V1_GenerateContentResponse_Candidates[0].https://cloud.google.com/dotnet/docs/reference/Google.Cloud.AIPlatform.V1/latest/Google.Cloud.AIPlatform.V1.Content.html.Parts[0].Text;\n Console.WriteLine(responseText);\n\n return responseText;\n }\n }\n\n### Node.js\n\n\nBefore trying this sample, follow the Node.js setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Node.js API\nreference documentation](/nodejs/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n const {VertexAI} = require('https://cloud.google.com/nodejs/docs/reference/vertexai/latest/overview.html');\n\n /**\n * TODO(developer): Update these variables before running the sample.\n */\n async function analyze_pdf(projectId = 'PROJECT_ID') {\n const vertexAI = new https://cloud.google.com/nodejs/docs/reference/vertexai/latest/vertexai/vertexai.html({project: projectId, location: 'us-central1'});\n\n const generativeModel = vertexAI.https://cloud.google.com/nodejs/docs/reference/vertexai/latest/vertexai/vertexai.html({\n model: 'gemini-2.0-flash-001',\n });\n\n const filePart = {\n fileData: {\n fileUri: 'gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf',\n mimeType: 'application/pdf',\n },\n };\n const textPart = {\n text: `\n You are a very professional document summarization specialist.\n Please summarize the given document.`,\n };\n\n const request = {\n contents: [{role: 'user', parts: [filePart, textPart]}],\n };\n\n const resp = await generativeModel.generateContent(request);\n const contentResponse = await resp.response;\n console.log(JSON.stringify(contentResponse));\n }\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=generativeaionvertexai)."]]