함수 호출로 콘텐츠 생성
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
함수 호출로 콘텐츠 생성 이 예시는 함수 하나와 프롬프트 하나가 포함된 텍스트 형식 시나리오를 보여줍니다.
더 살펴보기
이 코드 샘플이 포함된 자세한 문서는 다음을 참조하세요.
코드 샘플
Go
이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용의 Go 설정 안내를 따르세요.
자세한 내용은 Vertex AI Go API 참고 문서를 참조하세요.
Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다.
자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
import (
"context"
"encoding/json"
"errors"
"fmt"
"io"
"cloud.google.com/go/vertexai/genai"
)
// functionCallsBasic opens a chat session and sends 2 messages to the model:
// - first, to convert a text into a structured function call request
// - second, to convert a structured function call response into natural language
func functionCallsBasic(w io.Writer, prompt, projectID, location, modelName string) error {
// prompt := "What's the weather like in Boston?"
// location := "us-central1"
// modelName := "gemini-1.5-flash-001"
ctx := context.Background()
client, err := genai.NewClient(ctx, projectID, location)
if err != nil {
return fmt.Errorf("unable to create client: %w", err)
}
defer client.Close()
model := client.GenerativeModel(modelName)
// Build an OpenAPI schema, in memory
params := &genai.Schema{
Type: genai.TypeObject,
Properties: map[string]*genai.Schema{
"location": {
Type: genai.TypeString,
Description: "location",
},
},
}
fundecl := &genai.FunctionDeclaration{
Name: "getCurrentWeather",
Description: "Get the current weather in a given location",
Parameters: params,
}
model.Tools = []*genai.Tool{
{FunctionDeclarations: []*genai.FunctionDeclaration{fundecl}},
}
chat := model.StartChat()
fmt.Fprintf(w, "Question: %s\n", prompt)
resp, err := chat.SendMessage(ctx, genai.Text(prompt))
if err != nil {
return err
}
if len(resp.Candidates) == 0 ||
len(resp.Candidates[0].Content.Parts) == 0 {
return errors.New("empty response from model")
}
// The model has returned a function call to the declared function `getCurrentWeather`
// with a value for the argument `location`.
jsondata, err := json.MarshalIndent(resp.Candidates[0].Content.Parts[0], "", " ")
if err != nil {
return fmt.Errorf("json.MarshalIndent: %w", err)
}
fmt.Fprintf(w, "function call generated by the model:\n%s\n\n", string(jsondata))
// Create a function call response, to simulate the result of a call to a
// real service
funresp := &genai.FunctionResponse{
Name: "getCurrentWeather",
Response: map[string]any{
"currentWeather": "sunny",
},
}
jsondata, err = json.MarshalIndent(funresp, "", " ")
if err != nil {
return fmt.Errorf("json.MarshalIndent: %w", err)
}
fmt.Fprintf(w, "function call response sent to the model:\n%s\n\n", string(jsondata))
// And provide the function call response to the model
resp, err = chat.SendMessage(ctx, funresp)
if err != nil {
return err
}
if len(resp.Candidates) == 0 ||
len(resp.Candidates[0].Content.Parts) == 0 {
return errors.New("empty response from model")
}
// The model has taken the function call response as input, and has
// reformulated the response to the user.
jsondata, err = json.MarshalIndent(resp.Candidates[0].Content.Parts[0], "", " ")
if err != nil {
return fmt.Errorf("json.MarshalIndent: %w", err)
}
fmt.Fprintf(w, "Answer generated by the model:\n%s\n", string(jsondata))
return nil
}
Python
이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용의 Python 설정 안내를 따르세요.
자세한 내용은 Vertex AI Python API 참고 문서를 참조하세요.
Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다.
자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.
import vertexai
from vertexai.generative_models import (
Content,
FunctionDeclaration,
GenerationConfig,
GenerativeModel,
Part,
Tool,
)
# Initialize Vertex AI
# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
vertexai.init(project=project_id, location="us-central1")
# Initialize Gemini model
model = GenerativeModel("gemini-1.5-flash-001")
# Define the user's prompt in a Content object that we can reuse in model calls
user_prompt_content = Content(
role="user",
parts=[
Part.from_text("What is the weather like in Boston?"),
],
)
# Specify a function declaration and parameters for an API request
function_name = "get_current_weather"
get_current_weather_func = FunctionDeclaration(
name=function_name,
description="Get the current weather in a given location",
# Function parameters are specified in OpenAPI JSON schema format
parameters={
"type": "object",
"properties": {"location": {"type": "string", "description": "Location"}},
},
)
# Define a tool that includes the above get_current_weather_func
weather_tool = Tool(
function_declarations=[get_current_weather_func],
)
# Send the prompt and instruct the model to generate content using the Tool that you just created
response = model.generate_content(
user_prompt_content,
generation_config=GenerationConfig(temperature=0),
tools=[weather_tool],
)
function_call = response.candidates[0].function_calls[0]
print(function_call)
# Check the function name that the model responded with, and make an API call to an external system
if function_call.name == function_name:
# Extract the arguments to use in your API call
location = function_call.args["location"] # noqa: F841
# Here you can use your preferred method to make an API request to fetch the current weather, for example:
# api_response = requests.post(weather_api_url, data={"location": location})
# In this example, we'll use synthetic data to simulate a response payload from an external API
api_response = """{ "location": "Boston, MA", "temperature": 38, "description": "Partly Cloudy",
"icon": "partly-cloudy", "humidity": 65, "wind": { "speed": 10, "direction": "NW" } }"""
# Return the API response to Gemini so it can generate a model response or request another function call
response = model.generate_content(
[
user_prompt_content, # User prompt
response.candidates[0].content, # Function call response
Content(
parts=[
Part.from_function_response(
name=function_name,
response={
"content": api_response, # Return the API response to Gemini
},
),
],
),
],
tools=[weather_tool],
)
# Get the model response
print(response.text)
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["번역 문제","translationIssue","thumb-down"],["기타","otherDown","thumb-down"]],[],[],[]]